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Chapter 12. The Cycle Space

and Bond Space

of J. A. Bondy and U. S. R. Murty’s

Graph Theory with Applications (1976)

Note. In Section 4.2. Spanning Trees of J. A. Bondy and U. S. R. Murty’s Graph

Theory, Graduate Texts in Mathematics #244 (Springer, 2008), we see that the

number of labeled trees on n vertices (and hence the number of spanning trees of

Kn) is nn−2 by Cayley’s Formula (Theorem 4.8). In these supplemental notes, we

cover Section 12.2, The Number of Spanning Trees, from J. A. Bondy and U. S. R.

Murty’s Graph Theory with Applications (Macmillan Press Ltd., 1976) and give a

formula for the number of spanning trees in an arbitrary connected graph.

Supplement. Section 12.2. The Number of Spanning Trees

Note. In this supplement, we determine the number of spanning trees in a graph

in terms of the basis matrix B for the bond space B.

Note 12.2.A. Let T be a spanning tree of connected graph G. We put an arbi-

trary orientation on G ro produce digraph D (so that we can use the ideas from

Supplement. Section 12.1, “Circulations and Potential Differences” on the bond

space. Let B be the basis matrix of B corresponding to T . By Theorem 12.2 of

the supplement, if S is a subset of arc set A with |S| = v − 1 then the square

https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-4-2.pdf
https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-Appl-12-1.pdf
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submatrix B|S is nonsingular if and only if S is a spanning tree of G (the linear

independence of the columns of B|S is given by Theorem 12.2(i) and by Corollary

12.2 the dimension of B is v−1 since G is connected). So there is a one-to-one cor-

respondence between spanning trees of G and the nonsingular square submatrices

of B of size (v − 1)× (v − 1). That is, the number of spanning trees of G is equal

to the number of nonsingular submatrices of B of size (v − 1)× (v − 1).

Definition. A matrix is unimodular if all of its full square submatrices have

determinants 0, +1, or −1.

Theorem 12.3. Let G be a graph and T a spanning tree of G. Let D be any

orientation of G and let B be the basis matrix of the bond space B corresponding

to T . Then B is a unimodular matrix.

Note 12.2.B. For the next proof, we need a result concerning the determinant

of the matrix product AB, where A is m × n and B is n × m (where m ≤ n).

Notice that A is m×m. In G. Hadley’s Linear Algebra, Addison Wesley (1961), the

following is proved (see Section 3-17, “Determinant of the Product of Rectangular

Matrices,” and page 102).
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Hadley’s Theorem. If A is an m × n matrix and B is an n × m

matrix (where m ≤ n), then det(AB) can be represented as the sum

of
(

n
m

)
terms. Each term is the product of two determinants of m×m

submatrices of A and B, respectively. A given determinant of an m×m

submatrix of A is formed from the columns j1, j2, . . . , jm of A, and the

corresponding determinant of an m×m submatrix of B is formed from

the rows j1, j2, . . . , jm of B.

We can apply Hadley’s Theorem to the product BB′, since B a basis matrix for B

and dim(B) = ν−1; the rows of B form a basis for B so that B is m×n = (ν−1)×ε.

Since G is connected, then it contains a spanning tree on ν vertices with ν− 1 arcs

(by Theorem 4.3 of Bondy and Murty’s graduate text in Section 4.1. Forests and

Trees), so that in G we have m = ν − 1 ≤ ε = n. Hadley’s Theorem implies

that det(BB′) is a sum of
(

n
m

)
=

(
ε

ν−1

)
terms, each of which is the product of a

determinant of a (ν−1)×(ν−1) submatrix of B based on ν−1 of the columns of B,

and the corresponding determinant of a (ν− 1)× (ν− 1) submatrix of B′ based on

the corresponding rows of B′. But B′ is the transpose of B, so the two submatrices

have the same determinant. We choose the submatrices by choosing ν− 1 columns

of B, or equivalently by choosing a subset S of the arc set A where |S| = ν − 1.

Then the (ν− 1)× (ν− 1) submatrix of B is B|S. Then Hadley’s Theorem Letting

S range over all subsets of A of cardinality ν − 1, Hadley’s Theorem gives

det(BB′) =
∑

S⊆A, |S|=ν−1

(det(B|S))2. (12.17)

https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-4-1.pdf
https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-4-1.pdf
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Theorem 12.4. Let G be a graph and T a spanning tree of G. Let D be any

orientation of G and let B be the basis matrix of the bond space B corresponding

to T . The number of spanning trees of G is τ(G) = det(BB′), where B′ is the

transpose of B.

Note 12.2.C. Similar to Note 12.2.A, Theorem 12.3, and Theorem 12.4, one can

show that if C is a basis matrix for the cycle space C corresponding to a tree, then

C is unimodular (similar to Theorem 12.3) and the number of spanning trees of G

is τ(G) = det(CC′) (similar to Theorem 12.4).

Note 12.2.C. For the final result in this section, we need to review some termi-

nology and results from Theory of Matrices (MATH 5090). In Section 3.1. Basic

Definitions and Notations, an n×m matrix A is partitioned into four matrices A11,

A12, A21, and A22 as

A =

 A11 A12

A21 A22


where A11 and A12 have the same number of rows (say r1); A21 and A22 have the

same number of rows (say r2); A11 and A21 have the same number of columns (say

c1); and A12 and A22 have the same number of columns (say c2). In Theorem 3.1.G

of the Theory of Matrices notes, it is shown that the determinant of partitioned

matrix with an off-diagonal zero matrix can be computed as =

det

 T 0

V W

 = det

 W V

0 T

 = det(T)det(W),

where T and W are square. Products of partitioned matrices are considered in

https://faculty.etsu.edu/gardnerr/5090/notes/Chapter-3-1.pdf
https://faculty.etsu.edu/gardnerr/5090/notes/Chapter-3-1.pdf
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Theory of Matrices in Theorem 3.2.2 of Section 3.2. Multiplication of Matrices and

Multiplication of Vectors and Matrices, where it is shown for appropriately sized

matrices:  A B

C D

  E F

G H

 =

 AE + BG AF + BH

CE + DG CF + DH

 .

Corollary 12.4. Let G be a graph and T a spanning tree of G. Let D be any

orientation of G, let B be the basis matrix of the bond space B corresponding to

T , and let C be the basis matrix of the cycle space C corresponding to T . The

number of spanning trees of G is τ(G) = ±det

 B

C

 .

Note 12.2.D. Since Theorem 12.2 holds for all basis matrices of the bond space

B, so Theorem 12.4 holds for any basis matrix of B, B, that is unimodular. It is to

be shown in Exercise 12.2.1(a) of J. A. Bondy and U. S. R. Murty’s Graph Theory

with Applications that a matrix K obtained by deleting any one row of the inci-

dence matrix M of digraph D is unimodular. From this we have that the number

of spanning trees of G can also be expressed as τ(G) = det(KK′). This expression

for τ(G) is known as the Matrix-Tree Theorem and originally due to Gustav Kirch-

hoff (March 12, 1824–October 17, 1887); it appeared in “Ueber die Auflösung der

Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung gal-

vanischer Ströme geführt wird [On the Resolution of the Equations to which One

is Led when Investigating the Linear Distribution of Galvanic Currents]” Annalen

der Physik und Chemie 72(12), 497–508 (1847); the front page of the paper can be

https://faculty.etsu.edu/gardnerr/5090/notes/Chapter-3-2.pdf
https://faculty.etsu.edu/gardnerr/5090/notes/Chapter-3-2.pdf
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viewed on the Wiley Online Library webpage. The Matrix-Tree Theorem is covered

in J. A. Bondy and U. S. R. Murty’s graduate level Graph Theory in Chapter 20,

“Electrical Networks,” and Section 20.4, “The Matrix-Tree Theorem.”
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