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Supplement. Graph Decompositions: Triple Systems

Note. In this supplement, we consider a simple graph G (often Kn) and various

isomorphic decompositions into copies of a given small graph. We start with Steiner

triple systems.

Definition. A Steiner triple system of order n is an isomorphic decomposition of

G = Kn into a family F of subgraphs of G such that each F ∈ F is isomorphic to

a 3-cycle. The members of F are called the blocks of the Steiner triple system. We

denote a Steiner triple system of order n as a STS(n).

Note. The definition of a Steiner triple system in the realm of design theory

is slightly different (though equivalent) to the above. Quoting from Lindner and

Rodger’s Design Theory (see page 1) [8]:

A Steiner triple system is an ordered pair (S, T ) where S is a finite set

of points or symbols, and T is a set of 3-element subsets of S called

triples, such that each pair of distinct elements of S occurs together in

exactly one triple of T . The order of a Steiner triple system (S, T ) is

the size of the set S, denoted |S|.
I have online notes for an undergraduate/graduate level class on Design Theory.

Note. Lindner and Rodger [8, page 1] say that Steiner triple systems were appar-

ently first defined by W. S. B. Wool-House in 1844 in the Lady’s and Gentlemen’s

Diary as “Prize Question 1733.” The problem was ultimately solved by Thomas P.

https://faculty.etsu.edu/gardnerr/Design-Theory/Notes-Design-Theory-LR2.htm
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Kirkman (1806–1895) in “On a Problem of Combinations,” Cambridge and Dublin

Mathematics Journal, 2 (1847), 191–204. Ironically, Steiner triple systems are

named for Jakob Steiner (1796–1863), a Swiss mathematician working in Berlin

most of his career, who gave necessary conditions for their existence and published

it in “Combinatorische Aufgabe,” Journal für die Reine und angewandte Mathe-

matik (Crelles Journal), 45 (1853), 181–182. The strange dates on the necessary

conditions of Steiner and the sufficiency of Kirkman are explained by a lack of

communication between mainland Europe and the British Isles at the time—this

likely results from fallout from the argument between Newton and Leibniz over

who deserves the credit for inventing/discovering calculus.

Jakob Steiner (1796–1863) Thomas P. Kirkman (1806–1895)

These images are from the MacTutor History of Mathematics Archive (accessed

3/6/2020).

Theorem. (Kirkman, 1847) A Steiner triple system of order n exists if and only

if n ≡ 1 or 3 (mod 6).

http://mathshistory.st-andrews.ac.uk/index.html
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Examples. Let the vertex set of K7 be {0, 1, 2, 3, 4, 5, 6}. We represent the 3-cycle

on vertices a, b, c with edges ab, bc, and ac as [a, b, c] = [b, c, a] = [c, a, b] = [c, b, a] =

[a, c, b] = [b, a, c]. Then the blocks of a Steiner triple system of order 7 is given by:

F = {[0, 1, 3], [1, 2, 4], [2, 3, 5], [3, 4, 6], [4, 5, 0], [5, 6, 1], [6, 0, 2]}.

With the vertex set of K9 as {0, 1, 2, . . . , 7, 8}, the blocks of a Steiner triple system

of order 9 is given by:

F = {[0, 1, 2], [0, 3, 6], [0, 4, 8], [0, 5, 7], [3, 4, 5], [1, 4, 7],

[1, 5, 6], [1, 3, 8], [6, 7, 8], [2, 5, 8], [2, 3, 7], [2, 4, 6]}.

There is a clear pattern in the blocks of the STS(7), but the pattern for the STS(9)

is not clear.

Note. Let’s establish the necessary conditions first given by Steiner. The argument

is based on the number of edges and the degrees of vertices.

Lemma T.1. If STS(n) exists then n ≡ 1 or 3 (mod 6).

Note. We now explore constructions that show the necessary conditions of Lemma

T.1 are, in fact, sufficient.

Definition. Let Kn be a complete graph with vertex set V (Kn) = {0, 1, 2, . . . , n−

1}. With edge xy ∈ E(Kn), associate the difference:

|x− y|n = min{(x− y)(mod n), (y − x)(mod n)}.
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Note. The set of differences associated with the edges of Kn is {1, 2, . . . , bn/2c}.

Under the permutation α = (0, 1, . . . , n− 1) (a “cyclic permutation”) we have that

if e = ab is any edge with associated difference d = |a − b|n, then every edge

in Kn with associated difference d is in the orbit of edge e, where the orbit of

edge e is {αi(a)αi(b) | i = 0, 1, . . . , n} ⊆ E(Kn). This allows us to address certain

decomposition problems in terms of partitions of the set of differences. For example,

the set of differences associated with K7 is {1, 2, 3} and we can consider the 3-cycle

[0, 1, 3]. The differences associated with the edges of this cycle are |1 − 0|7 = 1,

|3 − 1|7 = 2, and |3 − 0|7 = 3. So each difference associated with edges in K7,

appears exactly once. Therefore, there is an isomorphic decomposition of K7 into

3-cycles given by {[0, 1, 3], [1, 2, 4], . . . , [6, 0, 2]}. This gives an easy justification of

the claimed decomposition of a STS(7) given above. Geometrically, we have:
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Note. For a STS(13), we observe that the set of differences associated with edges

of K13 is {1, 2, . . . , 6}. Notice that the two 3-cycles [0, 1, 4] and [0, 2, 7] have edges

with associated differences |1−0|13 = 1, |4−1|13 = 3, |4−0|13 = 4 and |2−0|13 = 2,

|7 − 2|13 = 5, |7 − 0|13 = 6, respectively. So the orbits of the 3-cycles [0, 1, 4] and

[0, 2, 7] under the permutation α = (0, 1, . . . , 12) generate a STS(13):

{[i (mod 13), (1 + i) (mod 13), (4 + i) (mod 13)],

[i (mod 13), (2 + i) (mod 13), (7 + i) (mod 13)] | i = 0, 1, . . . , 12}.

In the remainder of this section, we assume such vertex labels are reduced modulo

n so that we can express the decomposition as

{[i, 1 + i, 4 + i], [i, 2 + i, 7 + i] | i = 0, 1, . . . , 12}.

Notice that the differences d1 = 1, d2 = 3, d3 = 4 associated with the edges of

[0, 1, 4] satisfy d1 + d2 = d3; the differences d1 = 2, d2 = 5, d3 = 6 associated with

the edges of [0, 2, 7] satisfy d1 + d2 + d3 ≡ 0 (mod 13).

Note T.A. If 3-cycle [a, b, c] in Kn has edges with associated distinct differences

d1, d2, d3 then either d1 + d2 = d3 or d1 + d2 + d3 ≡ 0 (mod n). This is required

because the third edge of the 3-cycle must have the “first” vertex as one of its

ends. So often times finding a 3-cycle decomposition of Kn (and hence a STS(n))

is equivalent to partitioning the set of differences {1, 2, . . . , bn/2c} into (difference)

triples d1, d2, d3 such that either d1 + d2 = d3 or d1 + d2 + d3 ≡ 0 (mod n).
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Note. A STS(15) exists. The set of differences associated with K15 is {1, 2, . . . , 7}

(not a multiple of 3). But since 3 | 15, there is a trick! We take the 3-cycle

[0, 5, 10] and notice that each edge has associated difference 5. Under powers of

the permutation α = (0, 1, . . . , 14) we get the 3-cycles [0, 5, 10], [1, 6, 11], [2, 7, 12],

[3, 8, 13], and [4, 9, 14] (notice that applying α to the last 3-cycle yields [5, 10, 0] =

[0, 5, 10]). This 3-cycle is said to have a “short orbit.” This leaves the differences

1, 2, 3, 4, 6, 7 unaddressed. The 3-cycle [0, 1, 4] has associated differences 1, 3, 4

(and 1 + 3 = 4), and the 3-cycle [0, 2, 8] has associated differences 2, 6, 7 (and

2 + 6 + 7 = 15 ≡ 0 (mod 15)).

Note. The previous two notes give the conditions on the differences associated

with a 3-cycle in Kn. If d1, d2, d3 are distinct and associated with a 3-cycle, then

either d1 + d2 = d3 or d1 + d2 + d3 ≡ 0 (mod n). If n ≡ 0 (mod 3), then the single

difference d = n/3 can be associated with short orbit 3-cycle [0, n/3, 2n/3]. So if

the difference set {1, 2, . . . , bn/2c} can be partitioned into triples d1, d2, d3 where

either d1 + d2 = d3 or d1 + d2 + d3 ≡ 0 (mod n), AND when n ≡ 0 (mod 3) the

difference d = n/3 can be part of the partition, then there is a STS(n). A Steiner

triple system constructed in this way admits a permutation α = (0, 1, . . . , n− 1) as

an “automorphism” and the Steiner triple system is called cyclic. A collection of

triples which contains exactly once every difference associated with the edges of Kn

is called a collection of base blocks for the cyclic STS(n). In fact, for all n ≡ 1 or 3

(mod 6) (this is the necessary condition for the existence of a STS(n) by Lemma

T.1) there exists a cyclic STS(n) except for n = 9. This technique is broken into

smaller parts in the following discussion.
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Note. By Lemma T.1, a necessary condition for the existence of a STS(n) is n ≡ 1

or 3 (mod 6). In 1897, Lothar Heffter [4] stated two difference problems:

Heffter’s First Difference Problem. For n ≡ 1 (mod 6), say n = 6k + 1, par-

tition the set {1, 2, . . . , 3k} into triples such that in each triple either the sum

of two numbers equals the third or the sum of the three equals n.

Heffter’s Second Difference Problem. For n ≡ 3 (mod 6), say n = 6k + 3,

partition the set {1, 2, . . . , 2k, 2k + 2, 2k + 3, . . . , 3k + 1} into triples such that

in each triple either the sum of two numbers equals the third or the sum of

the three equals n.

A solution of Heffter’s First Difference Problem is equivalent to the existence of

a cyclic STS(6k + 1), and a solution of Heffter’s Second Difference Problem is

equivalent to the existence of a cyclic STS(6k + 3). These problems were first

solved in 1939 by Rose Peltesohn [12]. We present a solution to Heffter’s First

Difference Problem here based on Th. Skolem’s ideas of (A, k)-systems and (B, k)-

systems [14].

Definition. An (A, k)-system (where k ∈ N) is a partition of the set {1, 2, . . . , 2k}

into distinct pairs (ar, br) such that br = ar + r for r = 1, 2, . . . , k. A (B, k)-system

(where k ∈ N) is a partition of the set {1, 2, . . . , 2k − 1, 2k + 1} into distinct pairs

(ar, br) with br = ar + r for r = 1, 2, . . . , k.
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Note. If an (A, k)-system exists, then the triples r, ar + k, br + k for r = 1, 2, . . . , k

is a solution to Heffter’s First Difference Problem. This is because br = ar + r

implies br +k = (ar +k)+ r and, since the pairs (ar, br) for r = 1, 2, . . . , k partition

{1, 2, . . . , 2k}, then the triples r, ar + k, br + k for r = 1, 2, . . . , k partition the set

{1, 2, . . . , k, k + 1, k + 2, . . . , 3k}. So the existence of an (A, k)-system implies the

existence of a cyclic STS(6k + 1).

Note. If a (B, k)-system exists, then the triples r, ar + k, br + k for r = 1, 2, . . . , k

is a solution to Heffter’s First Difference Problem. This is because br = ar + r

implies br +k = (ar +k)+ r and, since the pairs (ar, br) for r = 1, 2, . . . , k partition

{1, 2, . . . , 2k−1, 2k+1}, then the triples r, ar +k, br +k for r = 1, 2, . . . , k partition

the set {1, 2, . . . , k, k + 1, k + 2, . . . , 3k− 1, 3k + 1}. Notice that the value 3k + 1 as

a difference is the same as the difference 3k in K6k+1 (since |3k + 1|6k+1 = 3k). So

the existence of a (B, k)-system implies the existence of a cyclic STS(6k + 1).

Note. Th. Skolem [14] gave necessary and sufficient conditions for the existence

of an (A, k)-system, as follows.

Lemma T.2. An (A, k)-system exists if and only if k ≡ 0 or 1 (mod 4).

Note. Th. Skolem [14] conjectured the following necessary and sufficient conditions

for the existence of a (B, k)-system in 1957; this was proved by Edward S. O’Keefe

[11] in 1961.
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Lemma T.3. A (B, k)-system exists if and only if k ≡ 2 or 3 (mod 4).

Lemma T.4. There exists a cyclic STS(n) for all n ≡ 1 (mod 6).

Definition. A (C, k)-system (where k ∈ N) is a partition of the set {1, 2, . . . , k, k+

2, k+3, . . . 2k+1} into distinct pairs (ar, br) such that br = ar+r for r = 1, 2, . . . , k.

A (D, k)-system (where k ∈ N) is a partition of the set {1, 2, . . . , k, k + 2, k +

3, . . . , 2k, 2k + 2} into distinct pairs (ar, br) with br = ar + r for r = 1, 2, . . . , k.

Note. If a (C, k)-system exists, then the triples r, ar + k, br + k for r = 1, 2, . . . , k

is a solution to Heffter’s Second Difference Problem. This is because br = ar + r

implies br +k = (ar +k)+ r and, since the pairs (ar, br) for r = 1, 2, . . . , k partition

{1, 2, . . . , k, k+2, k+3, . . . , 2k+1}, then the triples r, ar+k, br+k for r = 1, 2, . . . , k

partition the set {1, 2, . . . , k, k+1, . . . , 2k, 2k+2, 2k+3, . . . , 3k+1}. So the existence

of a (C, k)-system implies the existence of a cyclic STS(6k + 3).

Note. If a (D, k)-system exists, then the triples r, ar + k, br + k for r = 1, 2, . . . , k

is a solution to Heffter’s Second Difference Problem. This is because br = ar + r

implies br +k = (ar +k)+ r and, since the pairs (ar, br) for r = 1, 2, . . . , k partition

{1, 2, . . . , k, k + 2, k + 3, . . . , 2k, 2k + 2}, then the triples r, ar + k, br + k for r =

1, 2, . . . , k partition the set {1, 2, . . . , 2k, 2k +2, 2k +3, . . . , 3k, 3k +2}. Notice that

the value 3k + 2 as a difference is the same as the difference 3k + 1 in K6k+3 (since

|3k + 2|6k+3 = 3k + 1). So the existence of a (D, k)-system implies the existence of

a cyclic STS(6k + 3).
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Note. Alex Rosa [13] in 1966 gave necessary and sufficient conditions for the

existence of a (C, k)-system and a (D, k)-system, as follows.

Lemma T.5. A (C, k)-system exists if and only if k ≡ 0 or 3 (mod 4). A (D, k)-

system exists if and only if k ≡ 1 or 2 (mod 4), n 6= 1.

Lemma T.6. There exists a cyclic STS(n) for all n ≡ 3 (mod 6), n 6= 9.

Theorem T.1. A STS(n) exists if and only if n ≡ 1 or 3 (mod 6).

Note. We now turn our attention to digraphs and decompositions involving ori-

entations of 3-cycles. There are two orientations of a 3-cycle:

We denote the Mendelsohn triple given here as [a, b, c]M = [b, c, a]M = [c, a, b]M and

we represent the directed triple given here as [a, b, c]D. We denote the complete

digraph (that is, the digraph such that for every two vertices u and v there is

exactly one arc with tail u and head v and there is exactly one arc with tail v and

head u) on n vertices as Dn.
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Definition. A decomposition of Dn into Mendelsohn triples is called a Mendelsohn

triple system or order n, denoted MTS(n). A decomposition of Dn into directed

triples is called a directed triple system of order n, denoted DTS(n).

Note. In 1971, Nathan Mendelsohn gave necessary and sufficient conditions for

the existence of a Mendelsohn triple system of order n (thus the name of them; he

called them a “natural generalization of Steiner triple systems”) [10]. Mendelsohn,

along with S. Hung, gave necessary and sufficient conditions for the existence of a

directed triple system or order n in 1973 [6].

Theorem T.2. A MTS(n) exists if and only if n ≡ 0 or 1 (mod 3), n 6= 6.

Theorem T.3. A DTS(n) exists if and only if n ≡ 0 or 1 (mod 3).

Note. Some Mendelsohn and directed triple systems are easy to construct using

Steiner triple systems. If n ≡ 1 or 3 (mod 6) then a STS(n) exists. We can take the

triples of a STS(n) and replace each triple [a, b, c] with either the two Mendelsohn

triples [a, b, c]M and [c, b, a]M or the two directed triples [a, b, c]D and [c, b, a]D. This

gives a MTS(n) and a DTS(n), respectively. This technique does not cover the

cases of n ≡ 0 or 4 (mod 6).
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Note. Variants of Mendelsohn and directed triple systems are the ideas of a hybrid

triple system and an oriented triple system. Oriented triple systems (also called

“ordered triple systems”) were introduced by Curt Lindner and A. P. Street in 1984

[9]. Hybrid triple systems were introduced by Charlie Colbourn, W. R. Pulleyblank,

and Alex Rosa in 1989 [1] and simple direct constructions were given by Katherine

Heinrich in 1991 [5].

Definition. A c-hybrid triple system of order n, denoted HTS(n), is a decomposi-

tion of the complete digraph Dn into c Mendelsohn triples and v(v−1)/3−c transi-

tive triples. An oriented triple system (also called an ordered triple system of order

n), denoted OTS(n), is a c-HTS(v) where c is any of the values 0, 1, . . . , v(v−1)/3.

Theorem T.4. A c-HTS(n) exists if and only if n ≡ 0 or 1 (mod 3), n 6= 6, and

c ∈ {0, 1, 2, . . . , n(n − 1)/3 − 2, n(n − 1)/3}, or n = 6 and c ∈ {0, 1, 2, . . . , 8}. An

OTS(n) exists if and only if n ≡ 0 or 1 (mod 3).

Note. Recall that a mixed graph consists of a vertex set, an edge set, and an arc

set. The complete mixed graph on n vertices, denoted Mn, has for each pair u and

v of distinct vertices, an edge joining u and v, an arc from u to v, and an arc from

v to u. So Mn has twice as many arcs as edges. We can therefore extend the ideas

of Steiner triple systems, Mendelsohn triple systems, and directed triple systems

to mixed graphs. There are three distinct partial orientations of a 3-cycle which

have twice as many arcs as edges:
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We call these mixed triples and denote mixed triple Ti as [a, b, c]i where i ∈ {1, 2, 3}.

Mixed triple systems were introduced in 1999 by Robert “Dr. Bob” Gardner [2].

Definition. A decomposition of the complete mixed graph on n vertices into copies

of Ti is a Ti-mixed triple system, where i ∈ {1, 2, 3}.

Theorem T.5. A Ti-mixed triple system of order n exists for each i ∈ {1, 2, 3} if

and only if n ≡ 1 (mod 2), except in the cases n ∈ {3, 5} when i = 3.

Note. Along the lines of a hybrid triple system in the setting of digraphs, we

could consider hybrid mixed triple systems. This would be a decomposition of the

complete mixed graph into m1 copies of T1, m2 copies of T2, and m3 copies of T3

where m1 +m2 +m3 = n(n−1)/2. To date, nothing has been done in this direction

(to my knowledge. . . ), making this an open problem.
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Note. In 1986 Alan Hartman and Eric Mendelsohn considered all (strict) digraphs

on three vertices (of which there are 13, up to isomorphism):

They then defined 13 new types of “triple systems” in terms of decompositions of

Dn into copies of each of these 13 digraphs. They gave necessary and sufficient

conditions for the existence of each such triple system in their paper “The Last of

the Triple Systems” [3].

Note. In 2009, ETSU graduate student Ernest Jum considered all (simple/strict)

mixed graphs on three vertices with (like the complete mixed graph) twice as many

arcs as edges (of which there are 18, up to isomorphism) in his master’s thesis “The

Last of the Mixed Triple Systems” [7]:
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Mr. Jum gave necessary and sufficient conditions for the existence of a decomposi-

tion for the complete mixed graph into each of the triples, with the exception of the

two mixed graphs outlined in red here (which are converses of each other), making

this an open problem.
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