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Supplement. The Four-Color Theorem: A History, Part 2

Note. We continue our story of the history of the Four Color Theorem. Our

primary source remains Robin Wilson’s Four Colors Suffice, Princeton University

Press (2002).

Note. On the last page of Alfred B. Kempe’s paper, “On the Geographical Problem

of the Four Colours,” American Journal of Mathematics, 2(3), 193–200 (1879),

available online at the JSTOR website (accessed 12/23/2022), he states:

“If we lay a sheet of tracing paper over a map and mark a point on

it over each district and connect the points corresponding to districts

which have a common boundary, we have on the tracing paper a dia-

gram of a ‘linkage’, and we have the exact analogue of the question we

have been considering, that of lettering the points in the linkage with

as few letters as possible, so that no two directly connected points shall

be lettered with the same letter.”

Of course the marked “points” are the vertices of a graph, and the connections of

the points which correspond to districts with a common boundary are the edges

https://www.jstor.org/stable/2369235
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of a graph. It is at this early stage that the Four Color Theorem enters the realm

of graph theory. If we treat the map itself as a graph, then Kempe’s points and

connections represent the dual of the graph. This is formalized in Bondy and

Murty’s graduate text in Section 10.2. Duality. In Supplement. The Four-Color

Theorem: A History, Part 1, we gave an example of a small map (below left) and

a partial coloring that illustrated the failure of Kempe’s “proof” of the Four Color

Theorem.

On the left, we have the small map (with black borders) with the dual map su-

perimposed on it (with orange edges and vertices colored according to the colors

of the corresponding countries in the partial coloring). On the right, we have the

dual by itself (as given in Exercise 15.2.2 of Bondy and Murty’s graduate text).

Note FCT.K. Now four coloring a map is equivalent to four coloring the vertices

of the dual graph such that any two adjacent vertices have a different color (that

is, finding a proper vertex four coloring of the dual graph). Approaches to the Four

Color Theorem in the 20th century largely are based on consideration of the dual

https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-10-2.pdf
https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Supplement-Four-Color-Theorem1.pdf
https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Supplement-Four-Color-Theorem1.pdf
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graph. We saw in Section 10.2. Duality that the dual of a plane graph is itself a

plane graph (Lemma 10.2.A) and a dual of a plane graph is connected (Proposition

10.9). We also have in Proposition 10.11 of that section that a simple connected

plane graph is a triangulation (that is, all countries or “faces” are bounded by three

edges) if and only if its dual is cubic (that is, three regular). In Section 15.2. The

Four-Colour Theorem we see that a map which is a minimal counterexample to

the Four Color Theorem, the dual graph is a triangulation (Proposition 15.2(ii))

and has no vertex of degree less than four (Proposition 15.2(iii)). We then have by

Proposition 10.11 that a minimal map counterexample to the Four Color Theorem

has exactly three borders meeting at a single point (i.e., the map as a graph is

cubic). Notice that these properties are satisfied by the map and its dual from

Exercise 15.2.2, given above. The fact that the dual of a minimal counterexample

has no vertex of degree less than four corresponds to the fact that a minimal

counterexample cannot contain a two-sided country (by Note FCT.C), a three-sided

country (by Note FCT.D), nor a four-sided country (by Note FCT.H; this is the

result of Kempe’s correct argument using Kempe chains and Kempe interchange).

Note. By 1900, the flaws in Kempe’s attempted proof of the Four Color Theo-

rem was known. The idea that a correct proof had not been presented because

sufficiently talented mathematicians had not worked on the problem started to

circulate. One story is that Hermann Minkowski, while lecturing on topology at

Göttingen University, mentioned the four color problem and stated “This theorem

has not yet been proved, but that is because only mathematicians of the third

rank have occupied themselves with it.” (See Wilson’s page 143.) You might know

https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-10-2.pdf
https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-15-2.pdf
https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-15-2.pdf
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Minkowski’s name from Real Analysis 2 (MATH 5220), where the Triangle Inequal-

ity in the classical Lp spaces is called Minkowski’s Inequality (see my online notes

for this class on Section 7.2. The Inequalities of Young, Höolder, and Minkowski),

or from special relativity theory where flat spacetime is known as Minkowski space

(see my online notes for Differential Geometry [MATH 5510] on the supplemental

topic Section 1.1. The Minkowski Vector Space V4). Minkowski was one of Al-

bert Einstein’s mathematics instructors at the Federal Institute of Technology in

Zurich, Switzerland and once referred to Einstein as a “lazy dog.” (Upon learn-

ing of Einstein’s 1905 work on special relativity, Minkowski expressed surprise and

admiration!)

Note. Before the turn of the century, the four color problem had mostly been

of interest in Britain: De Morgan of the University College London, his student

Frederick Guthrie (and his brother Francis), Arthur Cayley of Trinity College Cam-

bridge, Alfred Kempe of London, and Percy Heawood of Durham College England.

After the turn of the century, several American mathematicians took an interest in

the problem. Wilson mentions George Birkhoff, Oswald Veblen, Philip Franklin,

Hassler Whitney by name (see his page 144). Two ideas emerged in work on the

problem, the concepts of an unavoidable set and a reducible configuration. Both

ideas were implicit in Kempe’s 1879 paper.

https://faculty.etsu.edu/gardnerr/5210/notes/7-2.pdf
https://faculty.etsu.edu/gardnerr/5310/5310pdf/Das/c1s1.pdf
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Note. To illustrate the concept of an unavoidable set, recall that the Only Five

Neighbors Theorem states that every map has at least one country with five or fewer

neighbors. If we consider the collection of cubic maps (those where each point of

intersection of boundaries involve the intersection of exactly three boundaries), we

then have that that each cubic map must include one of the following:

That is, these four arrangements of countries form an unavoidable set in the col-

lection of cubic maps.

Note FCT.L. A reducible configuration is any arrangement of countries that can-

not occur in a minimal counterexample to the Four Color Theorem. If a map

contains a reducible configuration, then any coloring of the rest of the map with

four colors can be extended, after any necessary recoloring, to a four coloring of

the entire map. We have seen that two, three, and four sided countries are exam-

ples of reducible configurations in Kempe’s work (see Notes FCT.C, FCT.D, and

FCT.H). If a five sided country could be shown to be a reducible configuration,

then we would have a proof of the Four Color Theorem (in modern terminology,

this is what Kempe unsuccessfully attempted to do).
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Note FCT.M. The strategy to prove the Four Color Theorem now be-

comes to show that no counterexample exists. This can be done by finding an

unavoidable set of configurations, each of which is reducible. We would

then have a counterexample that must contain a reducible configuration (which, of

course, it cannot contain). This contradiction proves that no counterexample can

exist, and hence the Four Color Theorem holds. Ultimately, this is the technique

that leads to a successful proof.

Note. Paul Wernicke in “Über den kartographischen Vierfarbensatz,” Math. Ann.,

58(3), 413–426 (1904) showed that a cubic map that contains no 2-sided, 3-sided, or

4-sided country must contain either two adjacent pentagons or a pentagon adjacent

to a hexagon. We illustrate the technique of discharging by showing that the set of

configurations consisting of the digon, triangle, square, pair of adjacent pentagons,

and pentagon adjacent to a hexagon is an unavoidable set. We will first assume that

we have a cubic map that contains none of these, and then find a contradiction. The

contradiction then implies that a pentagon can only be adjacent to countries with at

least seven edges. Discharging was first published by Heinrich Heesch (pronounced

‘haish’, June 25, 1906–July 26, 1995) in “Untersuchungen zum Vierfarbenproblem,”

Hochschulskriptum 810ab, Bibliographisches Institut, Mannheim, 1969.

Note FCT.N. ASSUME that a cubic map contains no 2-sided, 3-sided, or 4-

sided country, no two adjacent pentagons, and no pentagon adjacent to a hexagon.

We start by assigning a charge of 6 − k to each country with k boundary lines.
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Notice that when k < 5 (such as for a digon, triangle, and square), a country

gets a positive charge, a hexagon gets a 0 charge, and for k > 6 a country gets a

positive charge. Let Ck denote the number of countries with k sides. Then we have

C2 = C3 = C4 = 0 by assumption. The total charge on the map is then

(1× C5) + (0× C6) + (−1× C7) + (−2× C8) + · · ·

= C5 − C7 − 2C8 − 3C9 − 4C10 − · · · − (k − 6)Ck − · · · .

By the Counting Formula for Cubic Maps from Supplement. The Four-Color The-

orem: A History, Part 1, we have

4C2 + 3C3 + 2C4 + C5 − C7 − 2C8 − 3C9 − · · · − (k − 6)C6 − · · · = 12,

or since we have C2 = C3 = C4 = 0, C5−C7−2C8−3C9−· · ·−(k−6)C6−· · · = 12.

Therefore, the total charge on a cubic map is 12. We now move charges around

in such a way that the total charge is preserved (this is called discharging the

map). We are doing so still under the assumption that the map contains no 2-

sided, 3-sided, or 4-sided country, no two adjacent pentagons, and no pentagon

adjacent to a hexagon. For each pentagon, we transfer 1/5 of its charge to each

of its neighbors. By our assumption, the neighbors have at least seven boundary

lines and so have an initial charge of at most 6 − (7) = −1. After discharging

a single pentagon, each neighbor of the pentagon has a new charge of at most

(−1) + 1/5 = −4/5 < 0. Now we explore the charge on each country after all

pentagons are discharged. Since no two pentagons are adjacent, then the number

of pentagons neighboring a heptagon (a 7-sided country) is at most 3. So after

discharging all pentagon, each heptagon will have a charge of at most (−1) +

3(1/5) = −2/5 < 0. The number of pentagon neighboring an octagon is at most 4

https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Supplement-Four-Color-Theorem1.pdf
https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Supplement-Four-Color-Theorem1.pdf
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(and similarly for a nonagon), so after discharging the pentagons each octagon will

have a charge of at most (−2)+4(1/5) = −6/5 < 0 (for a nonagon the charge is at

most (−3) + 4(1/5) = −11/5 < 0). In general, after discharging a 2n-gon will have

a charge of (6− 2n) + n(1/5) = 6− 9n/5 < 0 and a 2n + 1-gon will have a charge

of (6− (2n + 1)) + n(1/5) = 5− 9n/5 < 0. This is illustrated for a heptagon and

an octagon below.

However, this means that, after discharging, all pentagons have charge 0 (they

were discharged), all hexagons have charge 0 (which did not change), and all other

countries have negative charge. But the total charge is unchanged and should be

12, a CONTRADICTION. So the assumption that a cubic map contains no 2-sided,
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3-sided, or 4-sided country, no two adjacent pentagons, and no pentagon adjacent

to a hexagon is false. That is, every cubic map must contain at least one of these

so that these form an unavoidable set. This same argument is presented in Graph

Theory 2 (MATH 5450) in Section 15.2. The Four-Colour Theorem, but applied to

the dual of the map so that the charges are on vertices instead of countries.

Note. In the 1920s, Philip Franklin showed that a related unavoidable set con-

tains a digon, triangle, square, and: a pentagon adjacent to two other pentagons,

a pentagon adjacent to a pentagon and a hexagon, and a pentagon adjacent to

two hexagons. This result is part of Franklin’s Ph.D. dissertation at Princeton

University. Another contributor to unavoidable sets was Henri Lebesgue (June 28,

1875–July 26, 1941) who, in 1940, wrote a paper in which he used Euler’s formula

and the Counting Formula for Cubic Maps to construct a number of new unavoid-

able sets. You know Lebesgue, of course, from Lebesgue measure and Lebesgue

integration which are the main topics of Real Analysis 1 (MATH 5210; see my

online notes for Real Analysis 1). The method of discharging can be used to show

that many sets of configurations are unavoidable. We illustrated this in one case

in Note FCT.N; but the discharging algorithm used there is specific to the given

set of configurations. Different configurations may require different discharging al-

gorithms. As the 20th century progressed, huge unavoidable sets (of thousands

of configurations) were constructed. For each unavoidable set, a discharging algo-

rithm is needed that can address all of the configurations. Ultimately, this is how

the Four Color Theorem was proved.

https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-15-2.pdf
https://faculty.etsu.edu/gardnerr/5210/notes1.htm
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Note FCT.O. George D. Birkhoff published “The Reducibility of Maps,” Ameri-

can Journal of Mathematics, 35(2), 115–128 (1913); it available online on JSTOR

(accessed 1/5/2023). In the paper, Birkhoff gave an exploration of Kempe chains

that would lead to later developments on reducibility. Birkhoff considered rings of

countries in a hypothesized minimal counterexample of the Four Color Theorem.

Whereas Kempe’s approach was to remove one country (and then use the minimal-

ity property of the alleged counterexample), Birkhoff’s approach removed several

countries at a time.

George D. Birkhoff

(March 21, 1884–November 12, 1944)

Image from the MacTutor History of Mathematics

Archive biography of Birkhoff (accessed 1/5/2023)

As an illustration, consider a ring of three countries (in grey) with at least one

country inside the ring and at least on country outside the ring:

https://www.jstor.org/stable/2370276
https://mathshistory.st-andrews.ac.uk/Biographies/Birkhoff/
https://mathshistory.st-andrews.ac.uk/Biographies/Birkhoff/
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If this map is a minimal counterexample to the Four Color Theorem, then by

deleting the countries outside the ring we get a map that is four colorable. Similarly,

if we delete the countries inside the ring we also get a map that is four colorable.

We can then mesh the two coloring together, permuting the colors in one of the

smaller maps if needed, as follows:

Birkhoff also showed that rings of four countries are reducible (though the con-
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struction is more complicated than the case of a ring of three countries). He was

mostly, but not entirely, successful in addressing rings of five countries. He could

not solve the case of a pentagon surrounded by a ring of five countries; this is the

same case that Kempe failed to do correctly. Birkhoff’s arguments also applied to a

few cases of rings of six countries. Arthur Bernhart was able to complete Birkhoff’s

work on rings of six countries in “Six-Rings in Minimal Five-Color Maps,” Ameri-

can Journal of Mathematics, 69(2), 391–412 (1947), available on JSTOR (accessed

1/6/2023).

Note FCT.P. One well known six-ring of countries is the Birkhoff diamond. Here

is the map corresponding to the Birkhoff diamond and its dual graph.

Notice that the dual graph is the Figure 15.7 of Bondy and Murty’s Section 15.2.

The Four-Colour Theorem (the dual graph is called “Birkhoff’s diamond” in Bondy

and Murty, since they are addressing the Four Color Theorem in terms of vertex

colorings of the dual of a map). Bondy and Murty show that the Birkhoff diamond

is reducible in their Theorem 15.7. We now give an of this here, based on the map

instead of the dual graph of the map. As usual, we assume that a minimal con-

tradiction to the Four Color Theorem exists which contains the Birkhoff diamond,

https://www.jstor.org/stable/2371861
https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-15-2.pdf
https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-15-2.pdf
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and then get a contradiction by showing that the map actually is four colorable.

We number the countries in the ring of six countries as 1 through 6 as follows:

If we use the four colors red, green, blue, and yellow (abbreviated r, g, b, and

y, respectively), then we get 31 essentially different colorings. By “essentially

different” we mean, in a sense, “up to permutations of colors and of the map”; for

example the coloring rgrgrg is the same as the coloring bybyby (we just interchange

red and blue, green and yellow). We choose r as the color in country 1 and g is

the color in country 2 throughout. The 31 colorings fall into two categories (one of

which we indicate with an asterisk) are:

rgrgrg rgrbrg* rgrbgy* rgbrgy rgbryb rgbgbg* rgbyrg rgbygy*

rgrgrb* rgrbrb rgrbyg* rgbrbg* rgbgrg* rgbgby rgbyrb rgbyby*

rgrgbg rgrbry rgrbyb* rgbrby rgbgrb* gbgyg rgbyry* rgbyby*

rgrgby* rgrbgb* rgbrbg rgbtyg rgbgry* rgbgyb rgbygb

The 16 colorings marked with an asterisk are called (by Wilson) “good colorings.”

They are such that the four pentagons can be colored without any adjustment. As

examples, we here are the first (rgrbrg) and last (rgbgry) asterisked cases:
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The remaining 15 cases require adjustments to the ring colors before the inner

four pentagons can be colored. Consider the coloring of the ring rgrbrb. We use

Kempe chains to convert it into a good coloring. If there is a red-yellow chain

connecting countries 3 and 5, then we can interchange the colors in the blue-green

chain starting at country 4 and constrained to be inside the red-yellow chain. This

makes all such blue countries (such as country 4) green and all such green countries

blue (resulting in no color violations). Then the four pentagons can be colored as

given below (left).
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If there is a red-yellow chain connecting countries 1 and 5, then we can interchange

the colors in the blue-green chain starting at country 6 and constrained to be inside

the red-yellow chain. This makes all such blue countries (such as country 6) green

and all such green countries blue (resulting in no color violations). Then the four

pentagons can be colored as given above (middle). If there is neither a red yellow

chain connecting countries 3 and 5, nor one connecting countries 1 and 5, the we

can interchange the colors in the red-yellow chain starting at country 5. This makes

country 5 yellow and then the four pentagons can be colors as given above (right).

Note FCT.Q. We next consider the coloring rgrbry.

If there is a blue-yellow chain from country 4 to country 6, then the colors in the

red-green chain starting at country 5 can be interchanged converting the coloring

into rgrbgy which is a good coloring (above left). If no such blue-yellow chain

exists, then we can interchange the colors in the blue-yellow chain starting at

country 6 (which does not circle back around to the ring of six countries; above
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right) producing the coloring rgrbrb which is not good, but was dealt with in the

previous example. In fact, all 31 of the possible colorings of the ring of six countries

are either good or can be modified to be good through Kempe chain changes of

color(s).

Note FCT.R. George Birkhoff published another landmark paper on colorings

in 1912. He considered the number of λ-colorings of a graph when considering

the Four Color Theorem in “A Determinant Formula for the Number of Ways of

Coloring a Map,” Annals of Mathematics, 14(1/4), 42–46 (1912/13). A copy is

available online on the JSTOR (accessed 1/8/2023). With λ ≥ 3 as the number

of colors used to color a given map, he showed that the number of ways to λ-color

the map is a polynomial in λ called the chromatic polynomial of the map. These

ideas are covered in Graph Theory 2 (MATH 5450) in Section 14.7. The Chromatic

Polynomial where it is discussed in the setting of proper vertex colorings; the fact

that the function is a polynomial is shown in those notes in Theorem 14.26. To

illustrate this idea, consider the following map:

Country A can be assigned any of the λ colors. Since Country B is a neighbor of

country A, then it can be assigned any of the remaining λ−1 colors. Since countries

C and D are both neighbors of countries A and B but not of each other, they can

each be assigned any of the remaining λ−2 colors. Therefore the number of possible

λ-colorings of the map (by the Fundamental Counting Principle) is given by the

https://www.jstor.org/stable/1967597
https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-14-7.pdf
https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-14-7.pdf
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polynomial P (λ) = λ(λ−1)(λ−2)2 = λ4−5λ3 +8λ2−4λ. Birkhoff undertook this

study in an attempt to prove the Four Color Theorem; notice that if P (4) ≥ 1 for a

given map, then that map can be four colored. In his paper, he proved that for all

chromatic polynomials, P (λ) ≥ λ(λ− 1)(λ− 2)(λ− 3)n−3 where P is a chromatic

polynomial for a map with n countries and this holds for all λ except λ = 4. Had

the inequality held for λ = 4, then the Four Color Theorem would follow since the

right-hand-side of the inequality for λ = 4 is 24. So Birkhoff was close! Following

Birkhoff’s work, the study of chromatic polynomials and reducible configurations

spread widely through the growing graph theory community in the 20th century.

Note. Graph theory was a growing discipline in the middle of the 20th century. It

was proving useful in addressing a number of applications. Interest was stimulated

by the appearance of several textbooks. Dénes König (September 21, 1884–October

19, 1944) published the first textbook on graph theory, Theorie der enlichen und

unendlichen Graphen, in 1936. A translation, appearing as Theory of Finite and

Infinite Graphs, by Richard McCoart with commentary by William Tutte, was

published by Birkhäuser Press in 1990. A limited preview of the translation is

available on Archive.org (accessed 1/8/2023).

https://archive.org/details/theoryoffinitein0000koni/
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The above images are from the MacTutor History of Mathematics Archive biogra-

phy of König and Amazon.com (accessed 1/8/2023). The 1960s saw several graph

theory books published, including: Claude Berge’s Theory of Graphs and Its Ap-

plications (Wiley, 1961), Oystein Ore’s Theory of Graphs (American Mathematical

Society, 1961), and Frank Harary’s Graph Theory (Addison-Wesley, 1969). Ore

also published the first book devoted to map coloring with The Four-Color Prob-

lem (Academic Press, 1967). Another followed by Gerhardt Ringel: Map Color

Theorem (Springer, 1974). By the way, Ringel is the coauthor of the book from

which I have developed online notes for Introduction to Graph Theory (MATH

4347/5347). The timing of these early textbooks shows how “young” graph theory

is as a discipline. As a quick observation, your instructor (who has a master’s de-

gree in a graph theory-related area) entered graduate school in 1984 and had never

heard of graph theory at the time!

Note. Wolfgang Haken (June 21, 1932–October 2, 2022) did his Ph.D. research

on topology and knot theory at the University of Kiel in (West) Germany. He

published his dissertation work in 1961 and its high quality lead to him ultimately

getting a job at the University of Illinois a Urbana-Champaign. There he struggled

(unsuccessfully) with the Poincaré Conjecture (one of the most famous unsolved

mathematical problems of the 20th century, it fell in 2002–2003 when it was proved

by the eccentric Grigori Perelman). Following this, he turned his attention to the

Four Color Theorem (well, the Four Color “Problem” or “Conjecture,” at the time).

As mentioned above, Heinrich Heesch published the idea of discharging in 1969.

Heesch had come to think that an unavoidable set of reducible configurations did

https://mathshistory.st-andrews.ac.uk/Biographies/Konig_Denes/
https://mathshistory.st-andrews.ac.uk/Biographies/Konig_Denes/
https://www.amazon.com/Theory-Finite-Infinite-Graphs-Denes/dp/1468489739
https://faculty.etsu.edu/gardnerr/5347/notes-Hartsfield-Ringel.htm
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exist (implying the validity of the Four Color Theorem), that these configurations

will not be large, but that there is likely to be very many of them in the set

(Wilson, page 176). In 1967, Haken contacted Heesch about the problem. At

that time, Heesch was working on extending Birkhoff’s 1913 ideas for generating

reducible configurations.

Heinrich Heesch Wolfgang Haken

These images are from the Wikipedia page for Heesch and

the Wikipedia page for Haken (accessed 1/8/2023).

Heesch defined two categories of reducible configurations. He labeled as D-reducible

those configurations for which every coloring of the surrounding ring of countries

yields an extension of the coloring without modification (we called these “good

colorings” in Note FCT.P), or which can be converted into a good coloring by a

succession of Kempe-chain color interchanges. The configurations in Notes FCT.P

and FTC.Q (including the Birkhoff diamond) are examples of D-reducible config-

urations. Heesch labeled as C-reducible those configurations that can be proved

reducible after they have been “modified in some way” (we leave this category

vaguely defined like this). Heesch introduced these categories in an attempt to sys-

https://en.wikipedia.org/wiki/Heinrich_Heesch
https://en.wikipedia.org/wiki/Wolfgang_Haken
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tematize Birkhhoff’s approach and to make the testing of configurations algorithmic

so that showing reducibility could be done by a computer. In 1965 Heesch, with

the help of Karl Dürre, had software (written in “Algol 60”) that could show the

D-reducibility of many configurations of increasing complexity. The complexity of

a configuration is determined by its ring-size; as we claimed in Note FCT.P when

the ring has size 6, there are 31 possible colorings to consider. The complexity

grows rapidly as:

ring-size 6 7 8 9 10 11 12 13 14

colorings 31 91 271 820 2461 7381 22144 64430 199291

Computational complexity is discussed in more detail (though still a bit informally)

in my online notes for Mathematical Modeling Using Graph Theory (MATH 5870);

see Section 8.1. Computational Complexity. It was thought at the time that ring-

size up to 18 would have to be considered to prove the Four Color Theorem (with

ring-size 18, there are over 16 million colorings; Wilson page 181). It turns out

that Appel and Haken’s 1976 solution showed that only ring-size up to 14 had to

be considered (Wilson page 182).

Note FCT.S. Heinrich Heesch came up with a short-hand notation to represent

configurations. The publication of the proof of the Four Color Theorem had dozens

of pages filled with configurations represented using a similar notation. Notice

below that Heesch’s notation is related to the dual of part of the map (provided we

treat each of the different symbols as representing vertices; the part represented is

gray in the figure); see Section 10.2. Duality. Since the maps are all cubic, then the

dual graphs all have faces of degree three; that is, the dual graph is a triangulation

https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-8-1.pdf
https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-10-2.pdf
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of the plane. Also, the symbol determines the degree of each vertex in the dual so

that, for example, the dots representing pentagons, “•,” are each of degree five in

the dual graph. This is implied by Heesch’s notation, but it is not the case that

each such vertex is degree five in Heesch’s notation; this is because the notation

represents a configuration that is part of a larger graph.

Note. At Haken’s home university, the University of Illinois, no supercomputer

was available (though one was under construction) so the software could not be

tested there. Heesch and Dürre connected with Yoshio Simamoto (1924–August

27, 2009) of the Atomic Energy Commission’s Brookhaven Laboratory who had

access to a Cray supercomputer. Shimamoto was a “devotee” of the Four Color

Theorem and had access to time on the Cray. Dürre converted the software from

Algol to Fortran. Using hours of time on the Cray, Heesch and Dürre were able

to confirm the D-reducibility of over 1000 configurations of ring-size 14 or less.

Shimamoto, pursuing his on research on the problem, was able to show that if he



Supplement. The Four-Color Theorem: A History, Part 2 22

could fins a single configuration with certain properties and if this configuration

were D-reducible, then the Four Color Theorem would follow (Wilson, page 186).

He found the following configuration, called the Shimamoto horseshoe and proved

that if this is D-reducible, then the Four Color Theorem holds.

This image from Robin Wilson’s “Wolfgang Haken and the Four-Color

Problem,” Illinois Journal of Mathematics, 60(1), 149–178 (2016);

available on the Celebration Mathematica webpage (accessed 1/10/2023).

Shimamoto, pursuing his on research on the problem, was able to show that if he

could fins a single configuration with certain properties and if this configuration

were D-reducible, then the Four Color Theorem would follow (Wilson, page 186).

He found the following configuration, called the Shimamoto horseshoe and proved

that if this is D-reducible, then the Four Color Theorem holds.

https://celebratio.org/Appel_KI/article/796/
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Ultimately, in late 1971 the Cray showed that the horseshoe is not D-reducible

after 26 hours of computer time (Wilson page 188). The Four Color “Theorem”

remained an unproved conjecture. This would change in five years.

Note. We now return the story to Wolfgang Haken. He had been in communica-

tion with Heesch during the time of the Brookhaven computer work, and Heesch

had sent him unpublished results on reducible configurations. At this time (the

early 1970s), most approaches were to collect reducible configurations by the hun-

dreds and then form an unavoidable set. Haken prioritized the unavoidable sets

themselves and looked for configurations likely to be reducible. Any configurations

that later proved not to be reducible could be addressed one at a time (Wilson

pages 193 and 194). During a lecture Haken gave on the Brookhaven work and

the Shimamoto horseshoe, he stated that the “computer experts” told him that

a computational approach was not promising. In attendance was Kenneth Appel

(October 8, 1932–April 19, 2013), who did Ph.D. work in mathematical logic and

algebra, and who had computing experience. Appel approached Haken after the

talk and told him that the “experts” were wrong and that computational approach

may take time, but that it should work. This lead to the Appel/Haken collabora-

tion starting in 1972.

Note. When their collaboration started in late 1972, they did not have a clear idea

of how to completely process the problem. Early computer runs proved informative

and hinted at the direction to proceed. However, the computer outputs were huge
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printouts and many configurations were repeated. They revised their programs and

a second run of their software showed improvements, including a reduced printout.

They began regularly revising their discharging algorithm and their printed output

shrank further. After six months, they were confident that their technique could

be used to produce a finite unavoidable set which could be processed by computer

in a reasonable amount of time (Wilson page 197). In mid-1974, Appel visited

the computer science department at the University of Illinois looking for a grad-

uate student who could, as part of their dissertation work, assist with additional

programming work. John Koch was available and became part of the project (he

would earn his Ph.D. under the direction of Appel).

This image from Robin Wilson’s “Wolfgang Haken and the Four-Color Problem,”

available on the Celebration Mathematica webpage (accessed 1/10/2023).

https://celebratio.org/Appel_KI/article/796/
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John Koch in 2020

This image is from The Archives & Special Collections

of Wilkes University webpage (accessed 1/10/2023).

Koch was first assigned the problem of the C-reducibility of configurations of ring-

size 11. He found an efficient method for testing for this reducibility, which Appel

extended to configurations with ring-sizes 12, 13, and 14. By the end of 1975,

the discharging method was causing occasional problems related to pentagons and

hexagons. In order to avoid rewriting their software, it was decided to perform the

final part of the discharging process by hand. Though this was work-intense, it gave

them a level of flexibility that allowed them to restrict all of their configurations

to ring-size 14 or less (Wilson pages 201 and 202). During the first half of 1976,

Appel and Haken finalized their discharging procedure and ended up with 487

discharging rules. In March 1976, the University of Illinois acquired a powerful

new computer for administrative use. Appel and Haken were granted time on the

computer. Appel, Haken, and Haken’s daughter, Dorothea, spent months working

through the 1936 configurations that would eventually form the unavoidable set.

By late June of 1976, the unavoidable set was constructed and in two days Appel

https://wuarchives.home.blog/2020/03/04/john-koch-the-four-color-programmer/
https://wuarchives.home.blog/2020/03/04/john-koch-the-four-color-programmer/
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was able to test it for reducibility. Additional checking of details was needed and

the results had to be written up, but on July 22, 1976 Appel and Haken publicly

announced their proof of the Four Color Theorem.

Note. Appel and Haken (and Koch) were not the only ones working on the prob-

lem. Frank Allaire of the University of Waterloo in Ontario was working on re-

ducibility methods that he had inherited from Jean Mayer. By 1976, Allaire was

months ahead of Appel and Haken and was expecting to complete his solution in

a few months. He joined with Ted Swart of the University of Rhodesia (now Zim-

babwe), who was working on a similar approach to that of Allaire’s. Before Appel

and Haken made their announcement, Allaire and Swart submitted a paper dscrib-

ing their algorithm for determining reducibility and including a list of all reducible

configurations with ring-size 10 or less. Their paper appeared as “A Systematic

Approach to the Determination of Reducible Configurations in the Four-Color Con-

jecture,” Journal of Combinatorial Theory B, 25(3), 339–362 (1978); that can be

viewed online on the ScienceDirect.com webpage (accessed 1/11/2023). Allaire and

Swart had a more systematic approach then that of Appel and Haken. Allaire was

understandably disappointed when he learned of Appel and Haken’s result, but

he was professional about it and in fact was the referee of the reducibility part of

the Apple-Haken paper (Wilson pages 211 and 212). Others working on the Four

Color Theorem at the time were Walter Stromquist, a doctoral student at Harvard

University, and Frank Bernhart of the University of Oklahoma who had published

previous work on Birkhoff’s work on rings of six countries and was creating addi-

tional reducibility arguments.

https://www.sciencedirect.com/science/article/pii/0095895678900102
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Note. The first publication concerning the proof of the Four Color Theorem is

a two page research announcement: Kenneth Appel and Wolfgang Haken, “Every

Planar Map is Four Colorable,” Bulletin of the American Mathematical Society,

82(5) (September 1976). This can be read online on the Project Euclid webpage

(accessed 1/11/2023). Appel and Haken decided to submit their paper to the

Illinois Journal of Mathematics (since this was a “local” journal for the authors,

they were able to suggest those best people to referee that paper). Jean Mayer

(mentioned above in connection with Allaire’s reducibility methods) refereed the

discharging arguments and Frank Allaire refereed the reducibility part. Haken

and Appel spent late 1976 and early 1977 refining their paper, conferring with

the referees on details, and preparing a microfiche of 450 pages of diagrams and

explanations. The paper had 1482 reducible configurations (instead of the 1936

that were considered in an earlier version of the paper) and 487 discharging rules,

and appeared in two parts plus the microfiche supplement. The references are:

• K. Appel, W. Haken, “Every planar map is four colorable. Part I: Discharging,”

Illinois Journal of Mathematics, 21(3), 429–490 (September 1977), and

• K. Appel, W. Haken, J. Koch, “Every planar map is four colorable. Part II:

Reducibility,” Illinois Journal of Mathematics, 21(3), 491–567 (September

1977).

These papers can be read or downloaded from the Project Euclid webpage (accessed

1/11/2023). The first figure in Part I is a legend that illustrates the presentation

of the many configurations; in fact, they use the same notation as introduced by

Heesch and illustrated above in Note FCT.S.

https://projecteuclid.org/journals/bulletin-of-the-american-mathematical-society/volume-82/issue-5/Every-planar-map-is-four-colorable/bams/1183538218.full
https://www.projecteuclid.org/journals/illinois-journal-of-mathematics/volume-21/issue-3
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Figure 1 from Part I: Discharging, page 436

Part I: Discharging includes 24 pages of figures (on pages 440–457 and 472–477)

related to “situations of small/large dischargings.” Part II: Reducibility includes

14 pages of prose interspersed with figures, followed by 63 pages of figures (on pages

505–567) related to reducible configurations. An example of this material is Figure

14 from page 548 of Part II is below. N. Robertson, D. Sanders, P. Seymour, and R.

Thomas in “The Four-Colour Theorem,” Journal of Combinatorial Theory, Series

B, 70(1), 2–44 (1997), used “only” 32 discharging rules to find 633 unavoidable

configurations (again, with computer assistance; available online on the Science

Direct website; accessed 1/11/2022).

https://www.sciencedirect.com/science/article/pii/S0095895697917500
https://www.sciencedirect.com/science/article/pii/S0095895697917500
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Figure 44 from Part II: Reducibility, page 548
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Note. The Appel, Hakin, and Koch 1977 proof drew quick criticism. Since key

parts of the proof were dependent on a computer search that could not be checked

by hand, the proof itself could not be checked. The controversy receded some

with the publication of Appel and Haken’s Every Planar Map is Four Colorable,

Contemporary Mathematics #98, 741 pp., American Mathematical Society (1989).

This work is described on the AMS Bookstore webpage as:

“. . . the book contains the full text of the supplements and checklists,

which originally appeared on microfiche. The thirty-page introduction,

intended for nonspecialists, provides some historical background of the

theorem and details of the authors’ proof. In addition, the authors

have added an appendix which treats in much greater detail the ar-

gument for situations in which reducible configurations are immersed

rather than embedded in triangulations. This result leads to a proof

that four coloring can be accomplished in polynomial time.” (Accessed

9/4/2022.)

The relatively simple 1997 JCT-B paper of N. Robertson, D. Sanders, P. Seymour,

and R. Thomas also calmed things. Some additional infomation is given in my

online notes on Section 15.2. The Four-Colour Theorem.

Note. The complaints that computer techniques have intruded into pure mathe-

matics proofs still persist. One resolution for the Four Color Theorem would be to

introduce a non-computer-based proof. But this would require new ideas and, over

the past 45 to 50 years since Appel and Haken’s initial success, there seems to be

no progress in this direction. The mathematics writer Ian Stewart is paraphrased

https://bookstore.ams.org/conm-98
https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-15-2.pdf


Supplement. The Four-Color Theorem: A History, Part 2 31

by Wilson (page 220) as complaining that the Appel-Haken proof “did not explain

why the theorem is true—partly because it was too long for anyone to grasp all

the details, and partly because it seemed to have no structure.” The purpose of

a mathematical proof is not so much to learn what is true about mathematical

structures, but why the mathematical structures have the proven properties.

Note. Objections to the proof are all based on the use of computers; it is not the

fact that it required so many cases or that the papers were so long. The classifica-

tion of finite simple groups was a project that took over 30 years, covered between

5,000 and 10,000 journal pages spread over 300 to 500 individual papers. Yet there

is no objection to this proof; see my online notes for Introduction to Modern Alge-

bra (MATH 4127/5127) on Supplement. Finite Simple Groups. Personally, I have

no strong objection to the use of computers in searching cases in a discrete math

proof. I have used this approach twice in my research (but only because I could not

find a simpler argument) In R. Gardner and T. Holt, “Decompositions of the Com-

plete Symmetric Digraph into Orientations of the 4-Cycle with a Pendant Edge,”

Congressus Numerantium, 190, 173–182 (2008), to show the nonexistence of a cer-

tain structure, I considered 69,120 cases and tested them with a small program

written in basic. I would have much preferred that such a structure would have

existed, so that I could simply have presented it! Similarly, if a counterexample

to the Four Color Theorem existed, then it could simply be given. . . but we don’t

always get what we want (only, according to the Rolling Stones, what we need).

Revised: 4/27/2023

https://faculty.etsu.edu/gardnerr/4127/notes/Simple-Groups.pdf
https://faculty.etsu.edu/gardnerr/pubs/C27.pdf
https://faculty.etsu.edu/gardnerr/pubs/C27.pdf

