Section 1.2. Subgraphs

Note. We complete our very brief survey of graph theory terms.

Definition. A subgraph of graph X is a graph Y such that $V(Y) \subseteq V(X)$ and $E(Y) \subseteq E(X)$. If $V(Y) = V(X)$ then Y is a spanning subgraph of X. A subgraph Y of X is an induced subgraph if two vertices of $V(Y)$ are adjacent in Y if and only if they are adjacent in X. See Figure 1.3.

![Figure 1.3. A spanning subgraph and an induced subgraph of a graph](image)

Definition. A subgraph of a given graph that is complete is called a clique. A set of vertices that induces an empty subgraph is an independent set. The size of the largest clique in a graph X is denoted by $\omega(X)$, and the size of the largest independent set is denoted by $\alpha(X)$.

Definition. A path of length r from x to y in a graph is a sequence of $r + 1$ distinct vertices starting with x and ending with y such that consecutive vertices are adjacent. If for any two distinct vertices in graph X there is a path from one vertex to the other then graph X is connected, otherwise X is disconnected.
1.2. Subgraphs

Note. A graph X is disconnected if and only if we can partition its vertices into two nonempty sets, R and S, such that no vertex in R is adjacent to a vertex in S. This is proved in Exercise 3.1.4 of Bondy and Murty’s *Graph Theory*, Graduate Texts in Mathematics #244 (2008, Springer).

Definition. If graph X is disconnected such that nonempty sets R and S partition the $V(X)$ where no vertex of R is adjacent to a vertex in S, then X is the (edge) *disjoint union* of the two subgraphs induced be R and S. A maximal connected induced subgraph of graph X is a *connected component* of X.

Definition. A *cycle* is a connected graph where every vertex has exactly two neighbors. An *acyclic graph* is a graph which contains no cycles. A connected acyclic graph is a *tree* (an acyclic not necessarily connected graph is called a *forest*). A spanning subgraph containing no cycles is a *spanning tree*. A *maximal spanning forest* in graph X is a spanning subgraph consisting of a spanning tree from each connected component.

Revised: 7/19/2020