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Chapter 1. Introduction

Note. In this brief chapter we review some basic definitions and terminology. We

use the material of this book as a supplement to J.A. Bondy and U.S.R. Murty’s

Graph Theory, Graduate Texts in Mathematics 244 (Springer, 2008). These notes

do not include all definitions from Chapter 1, but only those that differ somewhat

from Bondy and Murty’s and those of central importance to our focus. Here, the

focus is on topological graph theory. We consider, in particular, trees, bipartite

graphs, blocks, and connectivity.

Section 1.1. Basic Definitions

Note. Bondy and Murty define a graph G as a structure consisting of a vertex

set V (G) an edge set E(G), and an incidence function ψG which maps E(G) into

the set of unordered (not necessarily distinct) pairs of vertices. In this way, when

they use the term “graph” they are allowing parallel edges and loops (see my online

notes for Graph Theory 1 [MATH 5340] on 1.1. Graphs and Their Representations).

They define a “simple graph” as one with no parallel edges and no loops. Mohar

and Thomassen reserve the term “graph” for a simple graph, and for a graph with

parallel edges or loops they use the term “multigraph.” This allows them to avoid

the use of an incidence function in their definition of “graph” and they then refer

to edges as unordered pairs of vertices.

https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-1-1.pdf
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Definition. A (simple) graph G is a pair of sets V (G) and E(G) where V (G) 6= ∅

and E(G) is a set of 2-element subsets of V (G). The elements of V (G) are vertices

and the elements of E(G) are edges. For edge e = {x, y} ∈ E(G), vertices x and y

are the ends (or endvertices) of e. The cardinality of the vertex set |V (G)| is the

order of graph G. Vertices u and v are adjacent if there is an edge of G having u

and v as its ends, and in this case u and v are neighbors.

Note. Unless stated otherwise, we assume all graphs are of finite order,

|V (G)| < ∞. For e = {u, v} ∈ E(G), we commonly write e = uv = vu (the edge

being unambiguously determined by its ends in a simple graph).

Definition. A multigraph G is an ordered triple G = (V (G), E(G), ∂) where V (G)

is a (finite) nonempty set of vertices, E(G) is a (finite) set of edges, and ∂ is a

function that assigns to each edge e ∈ E(G) a (unordered) pair of (not necessarily

distinct) vertices (namely, the ends of e). Distinct edges which have the same ends

are parallel edges or multiple edges. An edge where the two ends are the same

vertex is loop. The degree of a vertex v ∈ V (G) is the number of edges that have v

as an end, counting each loop twice.

Note. The function ∂ here plays the same role as the incidence function ψG of

Bondy and Murty. If we allow multisets (that is, collections of elements where an el-

ement can be repeated in the collection; the number of times an element is repeated

is the multiplicity of the element) then we can define multigraphs similar to the way

we define (simple) graphs. We just take the vertex set V (G) to be nonempty and
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let the edge multiset E(G) have as its elements the 2-element multisets of vertices.

Adding a subscript of “m to denote a multiset (for example A = {a, a, b, c, c, c}m)

we have for the multigraph below (modified from Bondy and Murty’s Figure 1.1(a))

that V (G) = {u, v, w, x, y} and E(G) = {uu, uv, vw,wx,wx, xy, xu}m.

Figure 1.1(a) (from Bondy and Murty, modified)

Note. Mohar and Thomassen comment (see page 3):

“Most of the results that we shall derive for graphs carry over to multi-

graphs in a natural and obvious way. Because of slightly easier presen-

tation and since the more general framework of multigraphs does not

yield any stronger results, we decided to limit our presentation to

[simple] graphs whenever possible. [emphasis added]”

Definition. An isomorphism of graphs G andH is a one to one (injective) mapping

ψ of V (G) onto V (H) such that adjacent pairs of vertices of G are mapped to

adjacent vertices of H, and nonadjacent pairs of vertices have nonadjacent images.

If there is such an isomorphism, then G and G are isomorphic, which we denote

G = H.
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Note. The “structure” of a graph is the adjacency. So an isomorphism between

two graphs is a one to one and onto mapping (i.e., a bijection) that preserves

structure.

Definition. A graph G is connected if two of its vertices are connected by a path

in g. A connected component of a graph G is a maximal connected subgraph of G.

Definition. A subgraph C of G isomorphic to Cn (a cycle of length n) is called an

n-cycle in G. An edge e of G joining two nonconsecutive vertices of C is a chord of

C. If C has no chords, it is called chordless or an induced cylce in G. A complete

subgraph of G is a clique in G.

Note. We now give some definitions concerning creating a new graph from a given

G by making changes to the vertex and/or edge set of G. This will be useful, for

example, in classifying planar graphs.

Definition. For X ⊆ V (G), we have that G − X denotes the subgraph of G

obtained by deleting from G the vertices in X and all edges incident with them. If

v is a vertex in G then we denote G−{v} as G−v, called a vertex-deleted subgraph

of G. If A ⊆ E(G) then G−A is the subgraph of G obtained by removing from G

the edges in A. If e is an edge in G then we denote G−{e} as G−e. If u, v ∈ V (G)

are nonadjacent vertices of G, then G− uv denotes the graph obtained from G by

adding edge uv (so that E(G+ uv) = E(G) ∪ {uv}).
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Definition. Let e = uv be an edge of graph G and denote by G/e the graph (or

multigraph) obtained from G by removing the edge e and identifying its ends u and

v as a single new vertex. This operation is called edge contraction. If A ⊆ E(G)

then G/A denotes the graph (or multigraph) obtained by successively contracting

all edges in A.

Note. It is left as Exercise 1.1.1 to show that for A = {e1, e2, . . . , ek} ⊆ E(G),

the order in which we perform the successive edge contraction does not affect

G/A. The notation “G/A” is inspired by the notation of cosets of a group from

abstract algebra where bunches of group elements are identified (see my online

notes for Introduction to Modern Algebra [MATH 4127/5127] on II.10. Cosets and

the Theorem of Lagrange). We might be tempted to read “G/A” as “G modulo

A” here, but instead we read it as “G with edge contraction set A.” Figure 1.2

represents a graph G on the left with A ⊆ E(G) as the bold faced edges, and the

edge contracted multigraph G/A on the right.

Figure 1.2. The bold faced edges on the right are contracted, resulting in the

graph on the left where the new identified vertices are in black. Based on Mohar

and Thomassen’s Figure 1.2.

https://faculty.etsu.edu/gardnerr/4127/notes/II-10.pdf
https://faculty.etsu.edu/gardnerr/4127/notes/II-10.pdf
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Definition. A graph H is a minor of graph G if H is isomorphic to a graph

obtained from a subgraph G′ of G by contracting a set of edges A ⊂ E(G′).

Example 1.1.A. The Petersen graph has K5 as a minor. In the notation of Figure

1.2 above, we contract the bold faced edges of the Petersen graph as follows:

Note. A minor of G is of the form G′/A where G′ is a subgraph of G so that

G′ = (G−B)−C for some B ⊆ E(G) and some C ⊆ V (G) where the vertices in C

are (some of the) isolated vertices in G−B. So every minor o fG can be obtained

from G by successively contracting edges (to get G/A) and deleting edges (to get

(G/A)−B) and deleting isolated vertices (to get ((G/A)−B)−C). In Exercise 1.1.2

it is to be shown for A,B ⊆ E(H), where A∩B = ∅, that (H/A)−B = (H−B)/A.

So (G/A(−B − (G−B)/A and the order in which the edge contractions and edge

deletions are performed do not affect the minor graph. Of course, in performing

these operations, once a vertex appears as isolated then it can (if desired) be

removed, or it can be remoced later (if desired). That is, the (1) edge contractions,

(2) edge deletions, and (3) removal of isolated vertices, can be performed in any

order. Therefore, any minor of G is determined (up to a set of isolated vertices)
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by two disjoint sets A,B ⊆ E(G) where A is the set of edges to be contracted and

B is the set of edges to be removed. Bondy and Murty define a minor as a graph

resulting from a sequence of vertex and edge deletions in G (see 10.5. Kuratowskis

Theorem).

Note. The book describes vertex splitting as the inverse operation of edge con-

traction. Splitting vertex v in simple graph G is the replacement of v by adjacent

vertices v′ and v′′ and the replacement of each edge e = uv incident to v with

either edge v′u or edge v′′u (but not both) to create (simple graph G′. Bondy and

Murty describe this for multigraphs in 2.3 Modifying Graphs. See Figure 1.3 for

an example. Notice that the contraction of edge v′v′′ in G′ results in the original

graph G.

Figure 1.3. Splitting of vertex v. Based on Mohar and Thomassen’s Figure 1.3.

Definition. A graph H is a subdivision of graph G if H = G or if H can be

obtained from G by replacing some edges of G by paths such that each of these

paths has only its endpoints in common with G.

https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-10-5.pdf
https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-10-5.pdf
https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-2-3.pdf
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Note. Bondy and Murty define subdividing an edge by replacing an edge uv with

two new edges uw and wv. Then they define a subdivision of a graph as a graph

obtained by a sequence of edge subdivisions.

Definition. Graphs G and H are homeomorphic if there is a third graph K which

is isomorphic to a subdivision of G and isomorphic to a subdivision of H.

Note. In a topological setting, a homeomorphic is a bijection between two topo-

logical spaces which is continuous with a continuous inverse. See my online notes

for Introduction to Topology (MATH 4357/5357) on 2.18. Continuous Functions.

A homeomorphism between topological spaces is as an isomorphism between other

mathematical structures. Homeomorphic topological spaces have the “same shape.”

This is the idea behind the definition of a graph homeomorphism. Figure 1.4 gives

two homeomorphic graphs, neither of which is a subdivision of the other.

Figure 1.4. Homeomorphic graphs neither of which is a subdivision

of the other. Based on Mohar and Thomassen’s Figure 1.4.

Note. Bridges in a graph (in fact, in a multigraph) are explored in detail in Bondy

and Murty’s 10.4. Bridges. We now give a definition equivalent to their’s.

https://faculty.etsu.edu/gardnerr/5357/notes/Munkres-18.pdf
https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-10-4.pdf
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Definition. Let H be a subgraph of G. An H-bridge in G (or a “bridge of H in

G”) is a subgraph of G is either an edge not in H but with both ends in H (called

by Bondy and Murty a trivial H-bridge; the trivial H-bridge includes its ends in

H), or a connected component of G−V (H) together with all edges (and their ends

in H) which have one end in the component and the other end in H. Let B be

an H-bridge. Vertices of B ∩H are vertices of attachment (or simply attachments)

and each edge of B incident with a vertex of attachment is a foot of B.

Note. The edge sets of H-bridges partition the set E(G)\E(H). The figure below

gives an example of the four bridges associated with a cycle C is a graph.

Figure. A cycle C (in bold), along with the C-bridges B1, B2, B3, B4, and B5.

Based on Mohar and Thomassen’s Figures 1.5 and 1.6.

Note. For C a cycle in a graph G, the “interaction” of the C-bridges in G relate to

whether G is planar or not. For example, Theorem 10.26 of Bondy and Murty (in

10.4. Bridges) states that for plane graph G containing cycle C, the inner bridges

https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-10-4.pdf
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of X avoid one another and the outer bridges of C avoid one another. “Inner” and

“outer” here is used in the sense of the Jordan Curve Theorem and are based on

a particular given embedding of G in the plane. The term “avoid” as used here is

the negation of the term “overlap,” defined next.

Definition. Let C be a cycle in a graph G. Two C-bridges B1 and B2 overlap if

either

(i) B1 and B2 have these vertices of attachment in common, or

(ii) C contains distinct vertices a, b, c, d (in this cyclic order) such that a and c

are vertices of attachment of B1 and b and d are vertices of attachment of B2.

If (ii) holds then B1 and B2 skew-overlap (or are “skew” in the terminology of

Bondy and Murty).

Note. In the figure above, the following pairs of bridges overlap: B3 and B4, B3

and B5, and B4 and B5. The pairs B4 and B5 do not skew-overlap, while the other

two pairs do skew-overlap. Notice that each edge of B1, B2, B4, and B5 is a foot.

Bridge B3 has nine edges which are “feet.”
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