Section 1.2. Trees and Bipartite Graphs

Note. We consider two common classes of graphs and state a few results about them.

Definition. A *tree* is a connected graph that contains no cycles (i.e., an acyclic connected graph). A graph that contains no cycles (and is possibly disconnected) is a *forest*. The vertices of a tree of degree 1 are *endvertices* of the tree. For a given graph, a spanning subgraph which is a tree is a *spanning tree*.

Note. By Bondy and Murty's Theorem 4.6, a graph is connected if and only if it has a spanning tree

Note. The next result gives some classifications of trees.

Proposition 1.2.1. Let T be a graph of order n. Then the following are equivalent.

- (i) T is a tree.
- (ii) T is connected and has n-1 edges.
- (iii) T contains no cycles and has n-1 edges.
- (iv) T is connected but every edge-deletion results in a disconnected graph.
- (\mathbf{v}) T contains no cycles but every edge addition results in a graph with a cycle.
- (vi) Any two vertices in T are connected by exactly one path.

Note. The next result relates subgraphs of a given graph G which are trees to a minor of G.

Proposition 1.2.2. A graph H with vertices v_1, v_2, \ldots, v_k is a minor of graph G if and only if G contains pairwise disjoint trees T_1, T_2, \ldots, T_k such that for $1 \le i < j \le k$ there is an edge between a vertex of T_i and a vertex of T_j whenever v_i and v_j are adjacent in H.

Note. Mohar and Thomassen give an example in their Figure 1.9 which illustrates the idea of the proof of Proposition 1.2.2 in the case that the 3×4 grid graph Gcontains a minor of K_5 minus an edge. Notice that the minor results from deleting all the vertices of G which are not in any of the trees, and contracting all the edges in the trees (thus forming the vertices of the minor). We now formalize this in a proof of Proposition 1.2.2.

Figure 1.9. A 3×4 grid graph G (left), G with vertices in no subtrees deleted (center), and the graph that then results form contractions of the edges in each subtree.

Revised: 9/8/2020