Introduction to Graph Theory

Chapter 1. Basic Graph Theory

1.1. Graphs and Degrees of Vertices—Proofs of Theorems

Pearls in Graph Theorц
 A Comprethensive Introduction Nora Hartsfield Gerhard Ringel

Table of contents

(1) Theorem 1.1.1
(2) Theorem 1.1.2

Theorem 1.1.1

Theorem 1.1.1. Let $v_{1}, v_{2}, \ldots, v_{p}$ be the vertices of a graph G, and let $d_{1}, d_{2}, \ldots, d_{p}$ be the degrees of the vertices, respectively. Let q be the number of edges of G. Then

$$
d_{1}+d_{2}+\cdots+d_{p}=\sum_{i=1}^{p} d_{i}=2 q
$$

Proof. By definition, an edge e of G is incident to two distinct vertices, namely its endpoints, say v_{i} and v_{j}. So any given edge e contributes (an amount of 1) to two of the degrees, say d_{i} and d_{j}. Hence each edge of G accounts for an amount of 2 in the sum $d_{1}+d_{2}+\cdots+d_{p}$. That is, the sum is twice the number of edges, $d_{1}+d_{2}+\cdots+d_{p}=2 q$, as claimed.

Theorem 1.1.1

Theorem 1.1.1. Let $v_{1}, v_{2}, \ldots, v_{p}$ be the vertices of a graph G, and let $d_{1}, d_{2}, \ldots, d_{p}$ be the degrees of the vertices, respectively. Let q be the number of edges of G. Then

$$
d_{1}+d_{2}+\cdots+d_{p}=\sum_{i=1}^{p} d_{i}=2 q
$$

Proof. By definition, an edge e of G is incident to two distinct vertices, namely its endpoints, say v_{i} and v_{j}. So any given edge e contributes (an amount of 1) to two of the degrees, say d_{i} and d_{j}. Hence each edge of G accounts for an amount of 2 in the sum $d_{1}+d_{2}+\cdots+d_{p}$. That is, the sum is twice the number of edges, $d_{1}+d_{2}+\cdots+d_{p}=2 q$, as claimed.

Theorem 1.1.2

Theorem 1.1.2. (Havel, Hakimi) Consider the following two sequences and assume sequence (1) is in descending order.
(1) $s, t_{1}, t_{2}, \ldots, t_{s}, d_{1}, d_{2}, \ldots, d_{n}$
(2) $t_{1}-1, t_{2}-1, \ldots t_{s}-1, d_{1}, d_{2}, \ldots, d_{n}$.

The sequence (1) is graphic if and only if sequence (2) is graphic.
Proof. First assume that sequence (2) is graphic. Then, by definition of "graphic," there is a graph $G_{2}=\left(V_{2}, E_{2}\right)$ with degree sequence (2). We construct graph G_{1} from graph G_{2} by adding a single vertex S and adding s edges incident to S as follows:

Theorem 1.1.2

Theorem 1.1.2. (Havel, Hakimi) Consider the following two sequences and assume sequence (1) is in descending order.
(1) $s, t_{1}, t_{2}, \ldots, t_{s}, d_{1}, d_{2}, \ldots, d_{n}$
(2) $t_{1}-1, t_{2}-1, \ldots t_{s}-1, d_{1}, d_{2}, \ldots, d_{n}$.

The sequence (1) is graphic if and only if sequence (2) is graphic.
Proof. First assume that sequence (2) is graphic. Then, by definition of "graphic," there is a graph $G_{2}=\left(V_{2}, E_{2}\right)$ with degree sequence (2). We construct graph G_{1} from graph G_{2} by adding a single vertex S and adding s edges incident to S as follows:

Theorem 1.1.2

Theorem 1.1.2. (Havel, Hakimi) Consider the following two sequences and assume sequence (1) is in descending order.
(1) $s, t_{1}, t_{2}, \ldots, t_{s}, d_{1}, d_{2}, \ldots, d_{n}$
(2) $t_{1}-1, t_{2}-1, \ldots t_{s}-1, d_{1}, d_{2}, \ldots, d_{n}$.

The sequence (1) is graphic if and only if sequence (2) is graphic.
Proof. First assume that sequence (2) is graphic. Then, by definition of "graphic," there is a graph $G_{2}=\left(V_{2}, E_{2}\right)$ with degree sequence (2). We construct graph G_{1} from graph G_{2} by adding a single vertex S and adding s edges incident to S as follows:

Theorem 1.1.2 (continued 1)

Proof (continued). Symbolically, construct graph $G_{1}=\left(V_{1}, E_{1}\right)$ where $V_{1}=V_{2} \cup\{S\}$ (where S is a new vertex not in V_{2}) and E_{1} is the set of edges consisting of all edges in E_{2} along with s edges where each of these s edges has S as one endpoint and the other endpoint is one of the vertices of G_{2} of degree $t_{1}-1, t_{2}-1, \ldots, t_{s}-1$ (and each these s vertices of G_{2} appear as an endpoint of exactly one of the new edges). In terms of the symbols introduced in the figure above, $E_{1}=E_{2} \cup\left\{S T_{i} \mid i \in\{1,2, \ldots, s\}\right\}$. Then in graph G_{1}, vertex S is of degree s, each vertex of T_{i} has degree t_{i}, and each vertex D_{i} has degree d_{i}. So graph G_{1} has the sequence (1) as its degree sequence and so (1) is graphic, as claimed.

Theorem 1.1.2 (continued 1)

Proof (continued). Symbolically, construct graph $G_{1}=\left(V_{1}, E_{1}\right)$ where $V_{1}=V_{2} \cup\{S\}$ (where S is a new vertex not in V_{2}) and E_{1} is the set of edges consisting of all edges in E_{2} along with s edges where each of these s edges has S as one endpoint and the other endpoint is one of the vertices of G_{2} of degree $t_{1}-1, t_{2}-1, \ldots, t_{s}-1$ (and each these s vertices of G_{2} appear as an endpoint of exactly one of the new edges). In terms of the symbols introduced in the figure above, $E_{1}=E_{2} \cup\left\{S T_{i} \mid i \in\{1,2, \ldots, s\}\right\}$. Then in graph G_{1}, vertex S is of degree s, each vertex of T_{i} has degree t_{i}, and each vertex D_{i} has degree d_{i}. So graph G_{1} has the sequence (1) as its degree sequence and so (1) is graphic, as claimed.

Theorem 1.1.2 (continued 2)

Theorem 1.1.2. (Havel, Hakimi) Consider the following two sequences and assume sequence (1) is in descending order.
(1) $s, t_{1}, t_{2}, \ldots, t_{s}, d_{1}, d_{2}, \ldots, d_{n}$
(2) $t_{1}-1, t_{2}-1, \ldots t_{s}-1, d_{1}, d_{2}, \ldots, d_{n}$.

The sequence (1) is graphic if and only if sequence (2) is graphic.
Proof (continued). Now suppose the sequence (1) is graphic. Then, by definition of "graphic," there is a graph H with degree sequence (1). Denote the vertices of H of degree t_{i} and T_{i}, the vertices of degree d_{i} as D_{i}, and the vertex of degree s as S. We describe a procedure by which we construct from graph H a graph H_{m} which has (2) as its degree sequence. Denote graph H as H_{k} where $k=0$.

Step 1. If vertex S of H_{k} is adjacent to all of $T_{1}, T_{2}, \ldots, T_{s}$ then remove vertex S and the edges incident with it to produce a graph $H_{k+1}=H_{m}$ with degree sequence (2).

Theorem 1.1.2 (continued 2)

Theorem 1.1.2. (Havel, Hakimi) Consider the following two sequences and assume sequence (1) is in descending order.
(1) $s, t_{1}, t_{2}, \ldots, t_{s}, d_{1}, d_{2}, \ldots, d_{n}$
(2) $t_{1}-1, t_{2}-1, \ldots t_{s}-1, d_{1}, d_{2}, \ldots, d_{n}$.

The sequence (1) is graphic if and only if sequence (2) is graphic.
Proof (continued). Now suppose the sequence (1) is graphic. Then, by definition of "graphic," there is a graph H with degree sequence (1). Denote the vertices of H of degree t_{i} and T_{i}, the vertices of degree d_{i} as D_{i}, and the vertex of degree s as S. We describe a procedure by which we construct from graph H a graph H_{m} which has (2) as its degree sequence. Denote graph H as H_{k} where $k=0$.

Step 1. If vertex S of H_{k} is adjacent to all of $T_{1}, T_{2}, \ldots, T_{s}$ then remove vertex S and the edges incident with it to produce a graph $H_{k+1}=H_{m}$ with degree sequence (2).

Theorem 1.1.2 (continued 3)

Proof (continued).

Step 2. If, on the other hand, for some $1 \leq i \leq s$ vertex S is not adjacent to vertex T_{i}, then we modify H_{k} as follows. Since $d(S)=s$, then vertex S is adjacent to some vertex D_{j}. Since the sequence is arranged in descending order, $t_{i} \geq d_{j}$. First, if $t_{i}=d_{j}$, just exchange T_{i} and D_{j} creating a new graph H_{k+1} (and the degree sequence remains unchanged in the new graph H_{k+1}). Second, if $t_{i}>d_{j}$, then T_{i} has more neighbors the D_{j}, so there is a vertex W such that T_{i} is adjacent to W and D_{j} is not adjacent to W. In this case, remove edges $S D_{j}$ and $T_{i} W$ and add edges $S T_{i}$ and $D_{j} W$ to obtain the graph H_{k+1} which also has degree sequence (1):

Theorem 1.1.2 (continued 4)

Theorem 1.1.2. (Havel, Hakimi) Consider the following two sequences and assume sequence (1) is in descending order.
(1) $s, t_{1}, t_{2}, \ldots, t_{s}, d_{1}, d_{2}, \ldots, d_{n}$
(2) $t_{1}-1, t_{2}-1, \ldots t_{s}-1, d_{1}, d_{2}, \ldots, d_{n}$.

The sequence (1) is graphic if and only if sequence (2) is graphic.
Proof (continued). Notice that after applying Step 2, the resulting graph H_{k+1} has one more vertex in $\left\{T_{1}, T_{2}, \ldots, T_{s}\right\}$ to which vertex S is adjacent than does graph H_{k}. So we can repeatedly apply Step 1 and Step 2 producing graphs $H_{1}, H_{2}, \ldots, H_{m-1}$, reducing the number of vertices in $\left\{T_{1}, T_{2}, \ldots, T_{s}\right\}$ to which vertex S is not adjacent each time we apply Step 2. Since each H_{i} is a finite graph, then for some $m-1$ we have vertex S adjacent to each of $T_{1}, T_{2}, \ldots, T_{s}$. Finally, apply Step 1 to H_{m-1} producing graph H_{m} with degree sequence (2), showing that (2) is graphic, as claimed.

