Introduction to Graph Theory

Chapter 1. Basic Graph Theory 1.3. Trees—Proofs of Theorems

Table of contents

- Theorem 1.3.1
- 2 Theorem 1.3.2
- 3 Theorem 1.3.3
- 4 Theorem 1.3.A
- 5 Theorem 1.3.5
- 6 Theorem 1.3.6

Theorem 1.3.1. If G is a connected graph with p vertices and q edges, then $p \le q + 1$.

Proof. We give a proof by induction on the number of edges in *G*. If *G* has one edge then, since *G* is connected, it must have two vertices and the result holds. If *G* has two edges then, since *G* is connected, it must have three vertices and the result holds. So the base case is established for *G* having n = 3 (or n = 2) edges. Suppose the result holds for every connected graph with fewer than n edges. Let *G* be a connected graph with n edges and p vertices. We consider two cases.

Theorem 1.3.1. If G is a connected graph with p vertices and q edges, then $p \le q + 1$.

Proof. We give a proof by induction on the number of edges in *G*. If *G* has one edge then, since *G* is connected, it must have two vertices and the result holds. If *G* has two edges then, since *G* is connected, it must have three vertices and the result holds. So the base case is established for *G* having n = 3 (or n = 2) edges. Suppose the result holds for every connected graph with fewer than *n* edges. Let *G* be a connected graph with *n* edges and *p* vertices. We consider two cases.

<u>Case 1.</u> If G contains a cycle then we remove one edge of the cycle to create a new graph H. Then H is still connected and H has n-1 edges. The number of vertices of H is the same as the number of vertices of G, namely p. By the induction hypothesis, $p \le (n-1)+1$ or $p \le n$. Then (trivially) $p \le n+1$ and so the number of vertices of G (namely p) is at most the number of edges of G plus 1 (namely n+1).

Theorem 1.3.1. If G is a connected graph with p vertices and q edges, then $p \le q + 1$.

Proof. We give a proof by induction on the number of edges in *G*. If *G* has one edge then, since *G* is connected, it must have two vertices and the result holds. If *G* has two edges then, since *G* is connected, it must have three vertices and the result holds. So the base case is established for *G* having n = 3 (or n = 2) edges. Suppose the result holds for every connected graph with fewer than *n* edges. Let *G* be a connected graph with *n* edges and *p* vertices. We consider two cases.

<u>Case 1.</u> If G contains a cycle then we remove one edge of the cycle to create a new graph H. Then H is still connected and H has n-1 edges. The number of vertices of H is the same as the number of vertices of G, namely p. By the induction hypothesis, $p \le (n-1) + 1$ or $p \le n$. Then (trivially) $p \le n+1$ and so the number of vertices of G (namely p) is at most the number of edges of G plus 1 (namely n+1).

Theorem 1.3.1 (continued)

Theorem 1.3.1. If G is a connected graph with p vertices and q edges, then $p \le q + 1$.

Proof (continued).

Case 2. If G does not contain a cycle, then find a longest path in G. Let aand b be vertices at the end of the path. The vertex a must be of degree 1, or else G would either include a longer path (in the case that a is adjacent to a vertex not in the chosen path, contradicting the choice of the path) or G would contain a cycle (in the case that a is adjacent to another vertex of the path). Remove vertex a and the single edge incident with a to create graph H. Then H is connected and H has p-1 vertices and n-1 edges. By the induction hypothesis, the number of vertices of H is at most the number of edges of H plus 1; that is, $p-1 \le (n-1)+1$. So p < n + 1 and the number of vertices of G is at most the number of edges of *G* plus 1.

So the result now holds by Mathematical Induction.

0

Theorem 1.3.1 (continued)

Theorem 1.3.1. If G is a connected graph with p vertices and q edges, then $p \le q + 1$.

Proof (continued).

Case 2. If G does not contain a cycle, then find a longest path in G. Let aand b be vertices at the end of the path. The vertex a must be of degree 1, or else G would either include a longer path (in the case that a is adjacent to a vertex not in the chosen path, contradicting the choice of the path) or G would contain a cycle (in the case that a is adjacent to another vertex of the path). Remove vertex a and the single edge incident with a to create graph H. Then H is connected and H has p-1 vertices and n-1 edges. By the induction hypothesis, the number of vertices of H is at most the number of edges of H plus 1; that is, $p-1 \leq (n-1)+1$. So p < n+1 and the number of vertices of G is at most the number of edges of G plus 1.

So the result now holds by Mathematical Induction.

Theorem 1.3.2. If G is a tree with p vertices and q edges, then p = q + 1.

Proof. We give a proof based on mathematical induction on the number of edges of *G*. First, if *G* is a tree with q = 1 edge then, since trees are be definition connected, *G* must have p = 2 vertices and the base case holds. Now assume that the theorem is true for all trees with fewer then *n* edges (the induction hypothesis).

Theorem 1.3.2. If G is a tree with p vertices and q edges, then p = q + 1.

Proof. We give a proof based on mathematical induction on the number of edges of *G*. First, if *G* is a tree with q = 1 edge then, since trees are be definition connected, *G* must have p = 2 vertices and the base case holds. Now assume that the theorem is true for all trees with fewer then *n* edges (the induction hypothesis).

Let *G* be a tree with *p* vertices and *n* edges. As in the proof of Theorem 1.3.1, select a longest path in *G* with *a* and *b* as the ends of the path. Then vertex *a* must be degree 1, or else (in the case that *a* is adjacent to a vertex not in the path) the path could be made longer in contradiction to the fact that it is a longest path or (in the case that *a* is adjacent to 2 vertices in the path) *G* contains a cycle in contradiction to the fact that it is a tree. Then we "subtract" vertex *a* from graph *G* together with the edge incident with *a*. This gives a tree *H* with p - 1 vertices and n - 1 edges.

Theorem 1.3.2. If G is a tree with p vertices and q edges, then p = q + 1.

Proof. We give a proof based on mathematical induction on the number of edges of *G*. First, if *G* is a tree with q = 1 edge then, since trees are be definition connected, *G* must have p = 2 vertices and the base case holds. Now assume that the theorem is true for all trees with fewer then *n* edges (the induction hypothesis).

Let *G* be a tree with *p* vertices and *n* edges. As in the proof of Theorem 1.3.1, select a longest path in *G* with *a* and *b* as the ends of the path. Then vertex *a* must be degree 1, or else (in the case that *a* is adjacent to a vertex not in the path) the path could be made longer in contradiction to the fact that it is a longest path or (in the case that *a* is adjacent to 2 vertices in the path) *G* contains a cycle in contradiction to the fact that it is a tree. Then we "subtract" vertex *a* from graph *G* together with the edge incident with *a*. This gives a tree *H* with p - 1 vertices and n - 1 edges.

Theorem 1.3.2. If G is a tree with p vertices and q edges, then p = q + 1.

Proof. ... tree *H* with p-1 vertices and n-1 edges. By the induction hypothesis, tree *H* then satisfies (p-1) = (n-1) + 1 = n. Therefore p = n+1 and, since *G* has *p* vertices and *n* edges, the result holds tree *G*. Since *G* is an arbitrary tree with *p* vertices and *n* edges, then the claim hold for all trees with *n* edges.

So the result now holds by Mathematical Induction.

Theorem 1.3.3. If G is connected, and p = q + 1, then G is a tree.

Proof. Let graph *G* be connected with p = q + 1. ASSUME *G* is not a tree. Since *G* is connected but not a tree, then *G* must contain a cycle. "Subtract" an edge from *G* that is in the cycle and produce a graph *H*. Then *H* is still connected and *H* has *p* vertices and q - 1 edges. So by Theorem 1.3.1, $p \le (q - 1) + 1$, or $p \le q$. But we have assumed that p = q + 1, a CONTRADICTION. So the assumption that *G* is not a tree is false, and hence *G* is a tree as claimed.

Theorem 1.3.3. If G is connected, and p = q + 1, then G is a tree.

Proof. Let graph *G* be connected with p = q + 1. ASSUME *G* is not a tree. Since *G* is connected but not a tree, then *G* must contain a cycle. "Subtract" an edge from *G* that is in the cycle and produce a graph *H*. Then *H* is still connected and *H* has *p* vertices and q - 1 edges. So by Theorem 1.3.1, $p \le (q - 1) + 1$, or $p \le q$. But we have assumed that p = q + 1, a CONTRADICTION. So the assumption that *G* is not a tree is false, and hence *G* is a tree as claimed.

()

Theorem 1.3.A. Let the average degree of a connected graph G be greater than two. Then G has at least two cycles.

Proof. Let G be a connected graph, and let d_1, d_2, \ldots, d_p be the degree sequence of G. Since the average degree is greater that 2, we have $2 < \frac{d_1 + d_2 + \cdots + d_p}{p}$. By Theorem 1.1.1, $d_1 + d_2 + \cdots + d_p = 2q$, we we must have 2 < 2q/p or p < q. Then by Theorem 1.3.2, G is not a tree. Since G is connected and not a tree, then G must contain at least one cycle C_1 .

Theorem 1.3.A. Let the average degree of a connected graph G be greater than two. Then G has at least two cycles.

Proof. Let G be a connected graph, and let d_1, d_2, \ldots, d_p be the degree sequence of G. Since the average degree is greater that 2, we have $2 < \frac{d_1 + d_2 + \dots + d_p}{d_1 + d_2 + \dots + d_p}$. By Theorem 1.1.1, $d_1 + d_2 + \dots + d_p = 2q$, we we must have 2 < 2q/p or p < q. Then by Theorem 1.3.2, G is not a tree. Since G is connected and not a tree, then G must contain at least one cycle C_1 . "Subtract" an edge of cycle C_1 from G producing connected graph G' with p' = p vertices and q' = q - 1 edges. Since p < q then $p' = p \leq q - 1 = q'$ and by Theorem 1.3.2, G' is not a tree. Since G' is connected but not a tree, then G' contains a cycle C_2 . Notice that cycles C_1 and C_2 are different since an edges of C_1 was subtracted in the creation of graph G'. Therefore G contains at least two cycles, as claimed.

Theorem 1.3.A. Let the average degree of a connected graph G be greater than two. Then G has at least two cycles.

Proof. Let G be a connected graph, and let d_1, d_2, \ldots, d_p be the degree sequence of G. Since the average degree is greater that 2, we have $2 < \frac{d_1 + d_2 + \dots + d_p}{d_1 + d_2 + \dots + d_p}$. By Theorem 1.1.1, $d_1 + d_2 + \dots + d_p = 2q$, we we must have 2 < 2q/p or p < q. Then by Theorem 1.3.2, G is not a tree. Since G is connected and not a tree, then G must contain at least one cycle C_1 . "Subtract" an edge of cycle C_1 from G producing connected graph G' with p' = p vertices and q' = q - 1 edges. Since p < q then $p' = p \leq q - 1 = q'$ and by Theorem 1.3.2, G' is not a tree. Since G' is connected but not a tree, then G' contains a cycle C_2 . Notice that cycles C_1 and C_2 are different since an edges of C_1 was subtracted in the creation of graph G'. Therefore G contains at least two cycles, as claimed.

()

Theorem 1.3.5. A graph G is a tree if and only if there exists exactly one path between any two vertices.

Proof. First, suppose G is a tree. Let v_1 and v_2 be vertices of G. Since trees are, by definition, connected then there is a path from v_1 to v_2 . ASSUME there are two (or more) paths from v_1 to v_2 , say $P_1 = v_1 u_1 u_2 \cdots u_n v_2$ and $P_2 = v_1 w_1 w_2 \cdots w_m v_2$. If u_1 is distinct from w_1 , then we follow P_1 until we find a vertex, $u_i = w_j$, contained in P_1 that is also in P_2 (this may be v_2). Then we have a cycle:

Theorem 1.3.5. A graph G is a tree if and only if there exists exactly one path between any two vertices.

Proof. First, suppose G is a tree. Let v_1 and v_2 be vertices of G. Since trees are, by definition, connected then there is a path from v_1 to v_2 . ASSUME there are two (or more) paths from v_1 to v_2 , say $P_1 = v_1 u_1 u_2 \cdots u_n v_2$ and $P_2 = v_1 w_1 w_2 \cdots w_m v_2$. If u_1 is distinct from w_1 , then we follow P_1 until we find a vertex, $u_i = w_j$, contained in P_1 that is also in P_2 (this may be v_2). Then we have a cycle:

Theorem 1.3.5. A graph G is a tree if and only if there exists exactly one path between any two vertices.

Proof. First, suppose G is a tree. Let v_1 and v_2 be vertices of G. Since trees are, by definition, connected then there is a path from v_1 to v_2 . ASSUME there are two (or more) paths from v_1 to v_2 , say $P_1 = v_1 u_1 u_2 \cdots u_n v_2$ and $P_2 = v_1 w_1 w_2 \cdots w_m v_2$. If u_1 is distinct from w_1 , then we follow P_1 until we find a vertex, $u_i = w_j$, contained in P_1 that is also in P_2 (this may be v_2). Then we have a cycle:

Theorem 1.3.5 (continued 1)

Proof (continued). If $u_1 = w_1$ then we follow path P_1 until we reach a vertex $u_i \neq w_i$ (which exists sine P_1 and P_2 are different paths joining v_1 and v_2). Then we follow path P_1 from u_{i-1} to u_i to u_{i+1} , etc. until we find a vertex in P_1 that is also in P_2 (such a vertex exists since vertex v_2 satisfies the needed condition), and the we follow path P_2 back to u_{i-1} and this gives a cycle:

In either case *G* contains a cycle, but this is a CONTRADICTION to the fact that *G* is a tree. So the assumption that there are two (or more) paths from v_1 to v_2 is false and hence there is exactly one path between v_1 and v_2 . Since v_1 and v_2 are arbitrary vertices of *G*, then there is exactly one path between any two vertices of *G*.

()

Theorem 1.3.5 (continued 1)

Proof (continued). If $u_1 = w_1$ then we follow path P_1 until we reach a vertex $u_i \neq w_i$ (which exists sine P_1 and P_2 are different paths joining v_1 and v_2). Then we follow path P_1 from u_{i-1} to u_i to u_{i+1} , etc. until we find a vertex in P_1 that is also in P_2 (such a vertex exists since vertex v_2 satisfies the needed condition), and the we follow path P_2 back to u_{i-1} and this gives a cycle:

In either case G contains a cycle, but this is a CONTRADICTION to the fact that G is a tree. So the assumption that there are two (or more) paths from v_1 to v_2 is false and hence there is exactly one path between v_1 and v_2 . Since v_1 and v_2 are arbitrary vertices of G, then there is exactly one path between any two vertices of G.

0

Theorem 1.3.5 (continued 2)

Theorem 1.3.5. A graph G is a tree if and only if there exists exactly one path between any two vertices.

Proof (continued). Now suppose that *G* is a graph with exactly one path between any two vertices. Notice that this implies that *G* is connected. ASSUME that *G* contains a cycle $v_1v_2 \cdots v_nv_1$. Then there are two paths from v_1 to v_n , namely the path $v_1v_2 \cdots v_n$ and the path $v_nv_1 = v_1v_n$. But this is a CONTRADICTION to the fact that there is exactly one path between any two vertices of *G*. So the assumption that *G* contains a cycle is false and hence *G* has no subgraph isomorphic to a cycle. That is, *G* is a tree.

Theorem 1.3.6. Every connected graph *G* contains a spanning tree.

Proof. If G is a tree, then the result trivially holds since G is a spanning tree of itself. If G is not a tree, then G contains a cycle. Let e_1 be an edge of the cycle and let $H_1 = G - e_1$ (that is, H_1 is the graph obtained from G by deleting edge e_1). Notice that H_1 is connected. If H_1 is a tree, then we are done. If not, then H_1 contains a cycle.

Theorem 1.3.6. Every connected graph *G* contains a spanning tree.

Proof. If *G* is a tree, then the result trivially holds since *G* is a spanning tree of itself. If *G* is not a tree, then *G* contains a cycle. Let e_1 be an edge of the cycle and let $H_1 = G - e_1$ (that is, H_1 is the graph obtained from *G* by deleting edge e_1). Notice that H_1 is connected. If H_1 is a tree, then we are done. If not, then H_1 contains a cycle. Let e_2 be an edge of the cycle and let $H_2 = H_1 - e_2$. Notice that H_2 is connected. We continue inductively in this manner creating graphs H_1, H_2, \ldots . Since *G* is a finite graph, this process terminates at some graph H_i is connected and which contains no cycle; that is, H_i is a tree. So *G* contains the spanning tree H_i , as claimed.

Theorem 1.3.6. Every connected graph *G* contains a spanning tree.

Proof. If G is a tree, then the result trivially holds since G is a spanning tree of itself. If G is not a tree, then G contains a cycle. Let e_1 be an edge of the cycle and let $H_1 = G - e_1$ (that is, H_1 is the graph obtained from G by deleting edge e_1). Notice that H_1 is connected. If H_1 is a tree, then we are done. If not, then H_1 contains a cycle. Let e_2 be an edge of the cycle and let $H_2 = H_1 - e_2$. Notice that H_2 is connected. We continue inductively in this manner creating graphs H_1, H_2, \ldots . Since G is a finite graph, this process terminates at some graph H_i is connected and which contains no cycle; that is, H_i is a tree. So G contains the spanning tree H_i , as claimed.