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Chapter 1. Basic Graph Theory
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Theorem 1.3.1

Theorem 1.3.1

Theorem 1.3.1. If G is a connected graph with p vertices and q edges,
then p ≤ q + 1.

Proof. We give a proof by induction on the number of edges in G . If G
has one edge then, since G is connected, it must have two vertices and the
result holds. If G has two edges then, since G is connected, it must have
three vertices and the result holds. So the base case is established for G
having n = 3 (or n = 2) edges. Suppose the result holds for every
connected graph with fewer than n edges. Let G be a connected graph
with n edges and p vertices. We consider two cases.

Case 1. If G contains a cycle then we remove one edge of the cycle to
create a new graph H. Then H is still connected and H has n − 1 edges.
The number of vertices of H is the same as the number of vertices of G ,
namely p. By the induction hypothesis, p ≤ (n − 1) + 1 or p ≤ n. Then
(trivially) p ≤ n + 1 and so the number of vertices of G (namely p) is at
most the number of edges of G plus 1 (namely n + 1).
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Theorem 1.3.1

Theorem 1.3.1 (continued)

Theorem 1.3.1. If G is a connected graph with p vertices and q edges,
then p ≤ q + 1.

Proof (continued).
Case 2. If G does not contain a cycle, then find a longest path in G . Let a
and b be vertices at the end of the path. The vertex a must be of degree
1, or else G would either include a longer path (in the case that a is
adjacent to a vertex not in the chosen path, contradicting the choice of
the path) or G would contain a cycle (in the case that a is adjacent to
another vertex of the path). Remove vertex a and the single edge incident
with a to create graph H. Then H is connected and H has p − 1 vertices
and n− 1 edges. By the induction hypothesis, the number of vertices of H
is at most the number of edges of H plus 1; that is, p − 1 ≤ (n − 1) + 1.
So p ≤ n + 1 and the number of vertices of G is at most the number of
edges of G plus 1.

So the result now holds by Mathematical Induction.
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Theorem 1.3.2

Theorem 1.3.2

Theorem 1.3.2. If G is a tree with p vertices and q edges, then p = q +1.

Proof. We give a proof based on mathematical induction on the number
of edges of G . First, if G is a tree with q = 1 edge then, since trees are be
definition connected, G must have p = 2 vertices and the base case holds.
Now assume that the theorem is true for all trees with fewer then n edges
(the induction hypothesis).

Let G be a tree with p vertices and n edges. As in the proof of Theorem
1.3.1, select a longest path in G with a and b as the ends of the path.
Then vertex a must be degree 1, or else (in the case that a is adjacent to a
vertex not in the path) the path could be made longer in contradiction to
the fact that it is a longest path or (in the case that a is adjacent to 2
vertices in the path) G contains a cycle in contradiction to the fact that it
is a tree. Then we “subtract” vertex a from graph G together with the
edge incident with a. This gives a tree H with p − 1 vertices and n − 1
edges.
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Theorem 1.3.2

Theorem 1.3.2

Theorem 1.3.2. If G is a tree with p vertices and q edges, then p = q +1.

Proof. . . . tree H with p − 1 vertices and n − 1 edges. By the induction
hypothesis, tree H then satisfies (p − 1) = (n − 1) + 1 = n. Therefore
p = n + 1 and, since G has p vertices and n edges, the result holds tree G .
Since G is an arbitrary tree with p vertices and n edges, then the claim
hold for all trees with n edges.

So the result now holds by Mathematical Induction.
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Theorem 1.3.3

Theorem 1.3.3

Theorem 1.3.3. If G is connected, and p = q + 1, then G is a tree.

Proof. Let graph G be connected with p = q + 1. ASSUME G is not a
tree. Since G is connected but not a tree, then G must contain a cycle.
“Subtract” an edge from G that is in the cycle and produce a graph H.
Then H is still connected and H has p vertices and q − 1 edges. So by
Theorem 1.3.1, p ≤ (q − 1) + 1, or p ≤ q. But we have assumed that
p = q + 1, a CONTRADICTION. So the assumption that G is not a tree
is false, and hence G is a tree as claimed.
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Theorem 1.3.A

Theorem 1.3.A

Theorem 1.3.A. Let the average degree of a connected graph G be
greater than two. Then G has at least two cycles.

Proof. Let G be a connected graph, and let d1, d2, . . . , dp be the degree
sequence of G . Since the average degree is greater that 2, we have

2 <
d1 + d2 + · · ·+ dp

p
. By Theorem 1.1.1, d1 + d2 + · · ·+ dp = 2q, we

we must have 2 < 2q/p or p < q. Then by Theorem 1.3.2, G is not a
tree. Since G is connected and not a tree, then G must contain at least
one cycle C1.

“Subtract” an edge of cycle C1 from G producing connected
graph G ′ with p′ = p vertices and q′ = q − 1 edges. Since p < q then
p′ = p ≤ q − 1 = q′ and by Theorem 1.3.2, G ′ is not a tree. Since G ′ is
connected but not a tree, then G ′ contains a cycle C2. Notice that cycles
C1 and C2 are different since an edges of C1 was subtracted in the creation
of graph G ′. Therefore G contains at least two cycles, as claimed.
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Theorem 1.3.5

Theorem 1.3.5

Theorem 1.3.5. A graph G is a tree if and only if there exists exactly one
path between any two vertices.

Proof. First, suppose G is a tree. Let v1 and v2 be vertices of G . Since
trees are, by definition, connected then there is a path from v1 to v2.
ASSUME there are two (or more) paths from v1 to v2, say
P1 = v1u1u2 · · · unv2 and P2 = v1w1w2 · · ·wmv2. If u1 is distinct from w1,
then we follow P1 until we find a vertex, ui = wj , contained in P1 that is
also in P2 (this may be v2). Then we have a cycle:
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Theorem 1.3.5

Theorem 1.3.5 (continued 1)

Proof (continued). If u1 = w1 then we follow path P1 until we reach a
vertex ui 6= wi (which exists sine P1 and P2 are different paths joining v1

and v2). Then we follow path P1 from ui−1 to ui to ui+1, etc. until we
find a vertex in P1 that is also in P2 (such a vertex exists since vertex v2

satisfies the needed condition), and the we follow path P2 back to ui−1

and this gives a cycle:

In either case G contains a cycle, but this is a CONTRADICTION to the
fact that G is a tree. So the assumption that there are two (or more)
paths from v1 to v2 is false and hence there is exactly one path between v1

and v2. Since v1 and v2 are arbitrary vertices of G , then there is exactly
one path between any two vertices of G .
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Theorem 1.3.5

Theorem 1.3.5 (continued 2)

Theorem 1.3.5. A graph G is a tree if and only if there exists exactly one
path between any two vertices.

Proof (continued). Now suppose that G is a graph with exactly one path
between any two vertices. Notice that this implies that G is connected.
ASSUME that G contains a cycle v1v2 · · · vnv1. Then there are two paths
from v1 to vn, namely the path v1v2 · · · vn and the path vnv1 = v1vn. But
this is a CONTRADICTION to the fact that there is exactly one path
between any two vertices of G . So the assumption that G contains a cycle
is false and hence G has no subgraph isomorphic to a cycle. That is, G is
a tree.
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Theorem 1.3.6

Theorem 1.3.6

Theorem 1.3.6. Every connected graph G contains a spanning tree.

Proof. If G is a tree, then the result trivially holds since G is a spanning
tree of itself. If G is not a tree, then G contains a cycle. Let e1 be an edge
of the cycle and let H1 = G − e1 (that is, H1 is the graph obtained from G
by deleting edge e1). Notice that H1 is connected. If H1 is a tree, then we
are done. If not, then H1 contains a cycle.

Let e2 be an edge of the cycle
and let H2 = H1 − e2. Notice that H2 is connected. We continue
inductively in this manner creating graphs H1,H2, . . .. Since G is a finite
graph, this process terminates at some graph Hi is connected and which
contains no cycle; that is, Hi is a tree. So G contains the spanning tree
Hi , as claimed.
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