Introduction to Graph Theory

Chapter 1. Basic Graph Theory

1.3. Trees—Proofs of Theorems

Pearls in Graph Theory A Comprachensive Introdiuction Nora Hartsfield Gerhard Ringel

Table of contents

(1) Theorem 1.3.1
(2) Theorem 1.3.2
(3) Theorem 1.3.3
(4) Theorem 1.3.A
(5) Theorem 1.3.5
(6) Theorem 1.3.6

Theorem 1.3.1

Theorem 1.3.1. If G is a connected graph with p vertices and q edges, then $p \leq q+1$.

Proof. We give a proof by induction on the number of edges in G. If G has one edge then, since G is connected, it must have two vertices and the result holds. If G has two edges then, since G is connected, it must have three vertices and the result holds. So the base case is established for G having $n=3$ (or $n=2$) edges. Suppose the result holds for every connected graph with fewer than n edges. Let G be a connected graph with n edges and p vertices. We consider two cases.

Theorem 1.3.1

Theorem 1.3.1. If G is a connected graph with p vertices and q edges, then $p \leq q+1$.

Proof. We give a proof by induction on the number of edges in G. If G has one edge then, since G is connected, it must have two vertices and the result holds. If G has two edges then, since G is connected, it must have three vertices and the result holds. So the base case is established for G having $n=3$ (or $n=2$) edges. Suppose the result holds for every connected graph with fewer than n edges. Let G be a connected graph with n edges and p vertices. We consider two cases.

Case 1. If G contains a cycle then we remove one edge of the cycle to create a new graph H. Then H is still connected and H has $n-1$ edges. The number of vertices of H is the same as the number of vertices of G, namely p. By the induction hypothesis, $p \leq(n-1)+1$ or $p \leq n$. Then (trivially) $p \leq n+1$ and so the number of vertices of G (namely p) is at most the number of edges of G plus 1 (namely $n+1$).

Theorem 1.3.1

Theorem 1.3.1. If G is a connected graph with p vertices and q edges, then $p \leq q+1$.

Proof. We give a proof by induction on the number of edges in G. If G has one edge then, since G is connected, it must have two vertices and the result holds. If G has two edges then, since G is connected, it must have three vertices and the result holds. So the base case is established for G having $n=3$ (or $n=2$) edges. Suppose the result holds for every connected graph with fewer than n edges. Let G be a connected graph with n edges and p vertices. We consider two cases.

Case 1. If G contains a cycle then we remove one edge of the cycle to create a new graph H. Then H is still connected and H has $n-1$ edges. The number of vertices of H is the same as the number of vertices of G, namely p. By the induction hypothesis, $p \leq(n-1)+1$ or $p \leq n$. Then (trivially) $p \leq n+1$ and so the number of vertices of G (namely p) is at most the number of edges of G plus 1 (namely $n+1$).

Theorem 1.3.1 (continued)

Theorem 1.3.1. If G is a connected graph with p vertices and q edges, then $p \leq q+1$.

Proof (continued).

Case 2. If G does not contain a cycle, then find a longest path in G. Let a and b be vertices at the end of the path. The vertex a must be of degree 1 , or else G would either include a longer path (in the case that a is adjacent to a vertex not in the chosen path, contradicting the choice of the path) or G would contain a cycle (in the case that a is adjacent to another vertex of the path). Remove vertex a and the single edge incident with a to create graph H. Then H is connected and H has $p-1$ vertices and $n-1$ edges. By the induction hypothesis, the number of vertices of H is at most the number of edges of H plus 1 ; that is, $p-1 \leq(n-1)+1$. So $p \leq n+1$ and the number of vertices of G is at most the number of edges of G plus 1 .

So the result now holds by Mathematical Induction.

Theorem 1.3.1 (continued)

Theorem 1.3.1. If G is a connected graph with p vertices and q edges, then $p \leq q+1$.

Proof (continued).

Case 2. If G does not contain a cycle, then find a longest path in G. Let a and b be vertices at the end of the path. The vertex a must be of degree 1 , or else G would either include a longer path (in the case that a is adjacent to a vertex not in the chosen path, contradicting the choice of the path) or G would contain a cycle (in the case that a is adjacent to another vertex of the path). Remove vertex a and the single edge incident with a to create graph H. Then H is connected and H has $p-1$ vertices and $n-1$ edges. By the induction hypothesis, the number of vertices of H is at most the number of edges of H plus 1 ; that is, $p-1 \leq(n-1)+1$. So $p \leq n+1$ and the number of vertices of G is at most the number of edges of G plus 1 .

So the result now holds by Mathematical Induction.

Theorem 1.3.2

Theorem 1.3.2. If G is a tree with p vertices and q edges, then $p=q+1$. Proof. We give a proof based on mathematical induction on the number of edges of G. First, if G is a tree with $q=1$ edge then, since trees are be definition connected, G must have $p=2$ vertices and the base case holds. Now assume that the theorem is true for all trees with fewer then n edges (the induction hypothesis).

Theorem 1.3.2

Theorem 1.3.2. If G is a tree with p vertices and q edges, then $p=q+1$.
Proof. We give a proof based on mathematical induction on the number of edges of G. First, if G is a tree with $q=1$ edge then, since trees are be definition connected, G must have $p=2$ vertices and the base case holds. Now assume that the theorem is true for all trees with fewer then n edges (the induction hypothesis).

Let G be a tree with p vertices and n edges. As in the proof of Theorem 1.3.1, select a longest path in G with a and b as the ends of the path. Then vertex a must be degree 1, or else (in the case that a is adjacent to a vertex not in the path) the path could be made longer in contradiction to the fact that it is a longest path or (in the case that a is adjacent to 2 vertices in the path) G contains a cycle in contradiction to the fact that it is a tree. Then we "subtract" vertex a from graph G together with the edge incident with a. This gives a tree H with $p-1$ vertices and $n-1$ edges.

Theorem 1.3.2

Theorem 1.3.2. If G is a tree with p vertices and q edges, then $p=q+1$.
Proof. We give a proof based on mathematical induction on the number of edges of G. First, if G is a tree with $q=1$ edge then, since trees are be definition connected, G must have $p=2$ vertices and the base case holds. Now assume that the theorem is true for all trees with fewer then n edges (the induction hypothesis).

Let G be a tree with p vertices and n edges. As in the proof of Theorem 1.3.1, select a longest path in G with a and b as the ends of the path. Then vertex a must be degree 1 , or else (in the case that a is adjacent to a vertex not in the path) the path could be made longer in contradiction to the fact that it is a longest path or (in the case that a is adjacent to 2 vertices in the path) G contains a cycle in contradiction to the fact that it is a tree. Then we "subtract" vertex a from graph G together with the edge incident with a. This gives a tree H with $p-1$ vertices and $n-1$ edges.

Theorem 1.3.2

Theorem 1.3.2. If G is a tree with p vertices and q edges, then $p=q+1$.

Proof. ... tree H with $p-1$ vertices and $n-1$ edges. By the induction hypothesis, tree H then satisfies $(p-1)=(n-1)+1=n$. Therefore $p=n+1$ and, since G has p vertices and n edges, the result holds tree G. Since G is an arbitrary tree with p vertices and n edges, then the claim hold for all trees with n edges.

So the result now holds by Mathematical Induction.

Theorem 1.3.3

Theorem 1.3.3. If G is connected, and $p=q+1$, then G is a tree.

Proof. Let graph G be connected with $p=q+1$. ASSUME G is not a tree. Since G is connected but not a tree, then G must contain a cycle. "Subtract" an edge from G that is in the cycle and produce a graph H. Then H is still connected and H has p vertices and $q-1$ edges. So by Theorem 1.3.1, $p \leq(q-1)+1$, or $p \leq q$. But we have assumed that $p=q+1$, a CONTRADICTION. So the assumption that G is not a tree is false, and hence G is a tree as claimed.

Theorem 1.3.3

Theorem 1.3.3. If G is connected, and $p=q+1$, then G is a tree.

Proof. Let graph G be connected with $p=q+1$. ASSUME G is not a tree. Since G is connected but not a tree, then G must contain a cycle. "Subtract" an edge from G that is in the cycle and produce a graph H. Then H is still connected and H has p vertices and $q-1$ edges. So by Theorem 1.3.1, $p \leq(q-1)+1$, or $p \leq q$. But we have assumed that $p=q+1$, a CONTRADICTION. So the assumption that G is not a tree is false, and hence G is a tree as claimed.

Theorem 1.3.A

Theorem 1.3.A. Let the average degree of a connected graph G be greater than two. Then G has at least two cycles.

Proof. Let G be a connected graph, and let $d_{1}, d_{2}, \ldots, d_{p}$ be the degree sequence of G. Since the average degree is greater that 2 , we have $2<\frac{d_{1}+d_{2}+\cdots+d_{p}}{p}$. By Theorem 1.1.1, $d_{1}+d_{2}+\cdots+d_{p}=2 q$, we we must have $2<2 q / p$ or $p<q$. Then by Theorem 1.3.2, G is not a tree. Since G is connected and not a tree, then G must contain at least one cycle C_{1}.

Theorem 1.3.A

Theorem 1.3.A. Let the average degree of a connected graph G be greater than two. Then G has at least two cycles.

Proof. Let G be a connected graph, and let $d_{1}, d_{2}, \ldots, d_{p}$ be the degree sequence of G. Since the average degree is greater that 2 , we have $2<\frac{d_{1}+d_{2}+\cdots+d_{p}}{p}$. By Theorem 1.1.1, $d_{1}+d_{2}+\cdots+d_{p}=2 q$, we we must have $2<2 q / p$ or $p<q$. Then by Theorem 1.3.2, G is not a tree. Since G is connected and not a tree, then G must contain at least one cycle C_{1}. "Subtract" an edge of cycle C_{1} from G producing connected graph G^{\prime} with $p^{\prime}=p$ vertices and $q^{\prime}=q-1$ edges. Since $p<q$ then $p^{\prime}=p \leq q-1=q^{\prime}$ and by Theorem 1.3.2, G^{\prime} is not a tree. Since G^{\prime} is connected but not a tree, then G^{\prime} contains a cycle C_{2}. Notice that cycles C_{1} and C_{2} are different since an edges of C_{1} was subtracted in the creation of graph G^{\prime}. Therefore G contains at least two cycles, as claimed.

Theorem 1.3.A

Theorem 1.3.A. Let the average degree of a connected graph G be greater than two. Then G has at least two cycles.

Proof. Let G be a connected graph, and let $d_{1}, d_{2}, \ldots, d_{p}$ be the degree sequence of G. Since the average degree is greater that 2 , we have $2<\frac{d_{1}+d_{2}+\cdots+d_{p}}{p}$. By Theorem 1.1.1, $d_{1}+d_{2}+\cdots+d_{p}=2 q$, we we must have $2<2 q / p$ or $p<q$. Then by Theorem 1.3.2, G is not a tree. Since G is connected and not a tree, then G must contain at least one cycle C_{1}. "Subtract" an edge of cycle C_{1} from G producing connected graph G^{\prime} with $p^{\prime}=p$ vertices and $q^{\prime}=q-1$ edges. Since $p<q$ then $p^{\prime}=p \leq q-1=q^{\prime}$ and by Theorem 1.3.2, G^{\prime} is not a tree. Since G^{\prime} is connected but not a tree, then G^{\prime} contains a cycle C_{2}. Notice that cycles C_{1} and C_{2} are different since an edges of C_{1} was subtracted in the creation of graph G^{\prime}. Therefore G contains at least two cycles, as claimed.

Theorem 1.3.5

Theorem 1.3.5. A graph G is a tree if and only if there exists exactly one path between any two vertices.

Proof. First, suppose G is a tree. Let v_{1} and v_{2} be vertices of G. Since trees are, by definition, connected then there is a path from v_{1} to v_{2}. ASSUME there are two (or more) paths from v_{1} to v_{2}, say $P_{1}=v_{1} u_{1} u_{2} \cdots u_{n} v_{2}$ and $P_{2}=v_{1} w_{1} w_{2} \cdots w_{m} v_{2}$. If u_{1} is distinct from w_{1}, then we follow P_{1} until we find a vertex, $u_{i}=w_{j}$, contained in P_{1} that is also in P_{2} (this may be v_{2}). Then we have a cycle:

Theorem 1.3.5

Theorem 1.3.5. A graph G is a tree if and only if there exists exactly one path between any two vertices.

Proof. First, suppose G is a tree. Let v_{1} and v_{2} be vertices of G. Since trees are, by definition, connected then there is a path from v_{1} to v_{2}. ASSUME there are two (or more) paths from v_{1} to v_{2}, say $P_{1}=v_{1} u_{1} u_{2} \cdots u_{n} v_{2}$ and $P_{2}=v_{1} w_{1} w_{2} \cdots w_{m} v_{2}$. If u_{1} is distinct from w_{1}, then we follow P_{1} until we find a vertex, $u_{i}=w_{j}$, contained in P_{1} that is also in P_{2} (this may be v_{2}). Then we have a cycle:

Theorem 1.3.5

Theorem 1.3.5. A graph G is a tree if and only if there exists exactly one path between any two vertices.

Proof. First, suppose G is a tree. Let v_{1} and v_{2} be vertices of G. Since trees are, by definition, connected then there is a path from v_{1} to v_{2}. ASSUME there are two (or more) paths from v_{1} to v_{2}, say $P_{1}=v_{1} u_{1} u_{2} \cdots u_{n} v_{2}$ and $P_{2}=v_{1} w_{1} w_{2} \cdots w_{m} v_{2}$. If u_{1} is distinct from w_{1}, then we follow P_{1} until we find a vertex, $u_{i}=w_{j}$, contained in P_{1} that is also in P_{2} (this may be v_{2}). Then we have a cycle:

Theorem 1.3.5 (continued 1)

Proof (continued). If $u_{1}=w_{1}$ then we follow path P_{1} until we reach a vertex $u_{i} \neq w_{i}$ (which exists sine P_{1} and P_{2} are different paths joining v_{1} and v_{2}). Then we follow path P_{1} from u_{i-1} to u_{i} to u_{i+1}, etc. until we find a vertex in P_{1} that is also in P_{2} (such a vertex exists since vertex v_{2} satisfies the needed condition), and the we follow path P_{2} back to u_{i-1} and this gives a cycle:

In either case G contains a cycle, but this is a CONTRADICTION to the fact that G is a tree. So the assumption that there are two (or more) paths from v_{1} to v_{2} is false and hence there is exactly one path between v_{1} and v_{2}. Since v_{1} and v_{2} are arbitrary vertices of G, then there is exactly one path between any two vertices of G.

Theorem 1.3.5 (continued 1)

Proof (continued). If $u_{1}=w_{1}$ then we follow path P_{1} until we reach a vertex $u_{i} \neq w_{i}$ (which exists sine P_{1} and P_{2} are different paths joining v_{1} and v_{2}). Then we follow path P_{1} from u_{i-1} to u_{i} to u_{i+1}, etc. until we find a vertex in P_{1} that is also in P_{2} (such a vertex exists since vertex v_{2} satisfies the needed condition), and the we follow path P_{2} back to u_{i-1} and this gives a cycle:

In either case G contains a cycle, but this is a CONTRADICTION to the fact that G is a tree. So the assumption that there are two (or more) paths from v_{1} to v_{2} is false and hence there is exactly one path between v_{1} and v_{2}. Since v_{1} and v_{2} are arbitrary vertices of G, then there is exactly one path between any two vertices of G.

Theorem 1.3.5 (continued 2)

Theorem 1.3.5. A graph G is a tree if and only if there exists exactly one path between any two vertices.

Proof (continued). Now suppose that G is a graph with exactly one path between any two vertices. Notice that this implies that G is connected. ASSUME that G contains a cycle $v_{1} v_{2} \cdots v_{n} v_{1}$. Then there are two paths from v_{1} to v_{n}, namely the path $v_{1} v_{2} \cdots v_{n}$ and the path $v_{n} v_{1}=v_{1} v_{n}$. But this is a CONTRADICTION to the fact that there is exactly one path between any two vertices of G. So the assumption that G contains a cycle is false and hence G has no subgraph isomorphic to a cycle. That is, G is a tree.

Theorem 1.3.6

Theorem 1.3.6. Every connected graph G contains a spanning tree.
Proof. If G is a tree, then the result trivially holds since G is a spanning tree of itself. If G is not a tree, then G contains a cycle. Let e_{1} be an edge of the cycle and let $H_{1}=G-e_{1}$ (that is, H_{1} is the graph obtained from G by deleting edge e_{1}). Notice that H_{1} is connected. If H_{1} is a tree, then we are done. If not, then H_{1} contains a cycle.

Theorem 1.3.6

Theorem 1.3.6. Every connected graph G contains a spanning tree.
Proof. If G is a tree, then the result trivially holds since G is a spanning tree of itself. If G is not a tree, then G contains a cycle. Let e_{1} be an edge of the cycle and let $H_{1}=G-e_{1}$ (that is, H_{1} is the graph obtained from G by deleting edge e_{1}). Notice that H_{1} is connected. If H_{1} is a tree, then we are done. If not, then H_{1} contains a cycle. Let e_{2} be an edge of the cycle and let $H_{2}=H_{1}-e_{2}$. Notice that H_{2} is connected. We continue inductively in this manner creating graphs H_{1}, H_{2}, \ldots. Since G is a finite graph, this process terminates at some graph H_{i} is connected and which contains no cycle; that is, H_{i} is a tree. So G contains the spanning tree H_{i}, as claimed.

Theorem 1.3.6

Theorem 1.3.6. Every connected graph G contains a spanning tree.
Proof. If G is a tree, then the result trivially holds since G is a spanning tree of itself. If G is not a tree, then G contains a cycle. Let e_{1} be an edge of the cycle and let $H_{1}=G-e_{1}$ (that is, H_{1} is the graph obtained from G by deleting edge e_{1}). Notice that H_{1} is connected. If H_{1} is a tree, then we are done. If not, then H_{1} contains a cycle. Let e_{2} be an edge of the cycle and let $H_{2}=H_{1}-e_{2}$. Notice that H_{2} is connected. We continue inductively in this manner creating graphs H_{1}, H_{2}, \ldots. Since G is a finite graph, this process terminates at some graph H_{i} is connected and which contains no cycle; that is, H_{i} is a tree. So G contains the spanning tree H_{i}, as claimed.

