Introduction to Graph Theory

Chapter 10. Graphs on Surfaces

10.1. Rotations of Graphs—Proofs of Theorems

Introduction to Graph Theory

March 18, 2023 1 / 6

Theorem 10.1.1

(d-1)! different rotations of v.

We chose a second neighbor a_2 (there are d-1 ways to choose a_2), choose a third neighbor a_3 (there are d-2 ways to choose a_3), and so forth. So, by the Fundamental Counting Principle there are d! orderings of

different rotations of v is d!/d = (d-1)!, as claimed.

the neighbors of v. However, since cyclic permutations of the ordering do not affect the rotation, we have counted each rotation d times (any of the vertices can be considered the "first" neighbor), so that the number of

Introduction to Graph Theory

Theorem 10.1.1. If a vertex v of a graph has degree d, then there are

Proof. We chose a first neighbor of v, a_1 . There are d ways to choose a_1 .

Theorem 10.1.2

Theorem 10.1.2. Given a connected graph with p vertices and q edges, and a rotation ρ which induces $r(\rho)$ circuits, the inequality $p-q+r(\rho) \leq 2$ holds. Furthermore, the alternating sum $p-q+r(\rho)$ is even.

Proof. We give an inductive proof on the number of cycles in the graph. For the base case, suppose there are no cycles in the graph. Then it is a tree and so is connected. Any rotation of the tree induces exactly on circuit; we justify this claim with Figure 10.1.10. Therefore $r(\rho) = 1$ for any rotation ρ .

In a tree q=p-1 by Theorem 1.3.2, so $p-q+r(\rho)=p-(p-1)+1$ = 2 and the inequality holds, establishing the base case.

Theorem 10.1.2 (continued 1)

Proof (continued). For the induction hypothesis, suppose the claim holds for all connected graphs that have n or fewer cycles. Let G be a graph with n+1 cycles, and let ρ be a rotation of G. Let e be some edge on the cycle of G. Rotation ρ induces circuits in G and edge e either appears twice in the same circuit (once in each direction; see Figure 10.1.11) or it appears in two different circuits (in two different directions; see Figure 10.1.12).

Introduction to Graph Theory

March 18, 2023

March 18, 2023

Theorem 10.1.2 (continued 2)

Proof (continued). Consider the graph G-e, and choose the rotation $\hat{\rho}$ which is the same as ρ everywhere, except at the endpoints of e where $\hat{\rho}$ is ρ with edge e deleted. If e occurs twice in one circuit of G (as in Figure 10.1.11 left), then the one circuit of G will be replaced by two circuits in G-e (see Figure 10.1.11 right). Then $r(\rho)=r(\hat{\rho})-1$. If e occurs in two different circuits of G (as in Figure 10.1.12 left), then in G-e the two circuits are replaced with one circuit (see Figure 10.1.12 right). Then $r(\rho)=r(\hat{\rho})+1$. So in either of these cases, $r(\rho)=r(\hat{\rho})\pm 1$. Now graph G-e has p or fewer cycles. If the original graph G has p vertices and g edges, then g has g vertices and g edges. By the induction hypothesis, g has g vertices and g and g has g vertices. Therefore

$$p-q+r(\rho)=p-(q-1)-1+r(\hat{\rho})\pm 1 \leq p-(q-1)+r(\hat{\rho}) \leq 2,$$

as claimed. Since $p-(q-1)+r(\hat{\rho})$ is even and -1 ± 1 equals 0 or -2, then $p-q+r(\rho)$ is also even, as claimed.

Introduction to Graph Theory March 18, 2023