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Theorem 10.1.1

Theorem 10.1.1. If a vertex v of a graph has degree d, then there are
(d — 1)! different rotations of v.
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Theorem 10.1.1

Theorem 10.1.1. If a vertex v of a graph has degree d, then there are
(d — 1)! different rotations of v.

Proof. We chose a first neighbor of v, a;. There are d ways to choose a;.
We chose a second neighbor a, (there are d — 1 ways to choose ay),
choose a third neighbor as (there are d — 2 ways to choose a3), and so
forth. So, by the Fundamental Counting Principle there are d! orderings of
the neighbors of v. However, since cyclic permutations of the ordering do
not affect the rotation, we have counted each rotation d times (any of the
vertices can be considered the “first” neighbor), so that the number of
different rotations of v is d!/d = (d — 1)!, as claimed. O
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Theorem 10.1.2

Theorem 10.1.2. Given a connected graph with p vertices and g edges,
and a rotation p which induces r(p) circuits, the inequality

p— g+ r(p) <2 holds. Furthermore, the alternating sum p — g + r(p) is
even.
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Theorem 10.1.2

Theorem 10.1.2. Given a connected graph with p vertices and g edges,
and a rotation p which induces r(p) circuits, the inequality

p— g+ r(p) <2 holds. Furthermore, the alternating sum p — g + r(p) is
even.

Proof. We give an inductive proof on the number of cycles in the graph.
For the base case, suppose there are no cycles in the graph. Then it is a
tree and so is connected. Any rotation of the tree induces exactly on
circuit; we justify this claim with Figure 10.1.10. Therefore r(p) = 1 for

any rotation p. }%
wn 10.1.10
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Theorem 10.1.2

Theorem 10.1.2. Given a connected graph with p vertices and g edges,
and a rotation p which induces r(p) circuits, the inequality

p— g+ r(p) <2 holds. Furthermore, the alternating sum p — g + r(p) is
even.

Proof. We give an inductive proof on the number of cycles in the graph.
For the base case, suppose there are no cycles in the graph. Then it is a
tree and so is connected. Any rotation of the tree induces exactly on
circuit; we justify this claim with Figure 10.1.10. Therefore r(p) = 1 for

any rotation p. }%
wn 10.1.10

Inatree g=p—1by Theorem 1.32, sop—qg+r(p)=p—(p—1)+1
= 2 and the inequality holds, establishing the base case.
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Theorem 10.1.2 (continued 1)

Proof (continued). For the induction hypothesis, suppose the claim
holds for all connected graphs that have n or fewer cycles. Let G be a
graph with n + 1 cycles, and let p be a rotation of G. Let e be some edge

on the cycle of G.
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Theorem 10.1.2 (continued 1)

Proof (continued). For the induction hypothesis, suppose the claim
holds for all connected graphs that have n or fewer cycles. Let G be a
graph with n + 1 cycles, and let p be a rotation of G. Let e be some edge
on the cycle of G. Rotation p induces circuits in G and edge e either
appears twice in the same circuit (once in each direction; see Figure
10.1.11) or it appears in two different circuits (in two different directions;

see Figure 10.1.12).
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Proof (continued). For the induction hypothesis, suppose the claim
holds for all connected graphs that have n or fewer cycles. Let G be a
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10.1.11) or it appears in two different circuits (in two different directions;
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Theorem 10.1.2 (continued 2)

Proof (continued). Consider the graph G — e, and choose the rotation p
which is the same as p everywhere, except at the endpoints of e where j is
p with edge e deleted.
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Theorem 10.1.2 (continued 2)

Proof (continued). Consider the graph G — e, and choose the rotation p
which is the same as p everywhere, except at the endpoints of e where j is
p with edge e deleted. If e occurs twice in one circuit of G (as in Figure
10.1.11 left), then the one circuit of G will be replaced by two circuits in
G — e (see Figure 10.1.11 right). Then r(p) = r(p) — 1.
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Theorem 10.1.2 (continued 2)

Proof (continued). Consider the graph G — e, and choose the rotation p
which is the same as p everywhere, except at the endpoints of e where j is
p with edge e deleted. If e occurs twice in one circuit of G (as in Figure
10.1.11 left), then the one circuit of G will be replaced by two circuits in
G — e (see Figure 10.1.11 right). Then r(p) = r(p) — 1. If e occurs in two
different circuits of G (as in Figure 10.1.12 left), then in G — e the two
circuits are replaced with one circuit (see Figure 10.1.12 right). Then

r(p) = r(p) + 1. So in either of these cases, r(p) = r(p) = 1. Now graph
G — e has n or fewer cycles. If the original graph G has p vertices and g
edges, then G — e has p vertices and g — 1 edges.
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Theorem 10.1.2 (continued 2)

Proof (continued). Consider the graph G — e, and choose the rotation p
which is the same as p everywhere, except at the endpoints of e where j is
p with edge e deleted. If e occurs twice in one circuit of G (as in Figure
10.1.11 left), then the one circuit of G will be replaced by two circuits in
G — e (see Figure 10.1.11 right). Then r(p) = r(p) — 1. If e occurs in two
different circuits of G (as in Figure 10.1.12 left), then in G — e the two
circuits are replaced with one circuit (see Figure 10.1.12 right). Then

r(p) = r(p) + 1. So in either of these cases, r(p) = r(p) = 1. Now graph
G — e has n or fewer cycles. If the original graph G has p vertices and g
edges, then G — e has p vertices and g — 1 edges. By the induction
hypothesis, p — (g — 1) + r(p) <2 and p— (q — 1) + r(p) is even.
Therefore

p—q+r(p)=p—(q—1)—1+r(p) £1<p—(q— 1)+ r(p) < 2,

as claimed. Since p — (¢ — 1) + r(p) is even and —1 £ 1 equals 0 or —2,
then p — q + r(p) is also even, as claimed. O
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