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Theorem 10.2.1

Theorem 10.2.1

Theorem 10.2.1. If a graph G has a bridge, then for any rotation ρ of G ,
the bridge occurs in both directions in one circuit induced by ρ.

Proof. The bridge must be in some circuit. Since the circuit ends are at
the same vertex at which it starts, if we view the beginning vertex of the
circuit containing the bridge as one end of the bridge (followed, in the
circuit, be traversing the bridge) then we enter the back of the graph that
does not contain the beginning vertex. Then the only way to return to the
beginning vertex is to return to the bank containing this vertex and this
can only be done by “crossing” the bridge again in the opposite direction:

() Introduction to Graph Theory January 30, 2023 3 / 21



Theorem 10.2.1

Theorem 10.2.1

Theorem 10.2.1. If a graph G has a bridge, then for any rotation ρ of G ,
the bridge occurs in both directions in one circuit induced by ρ.

Proof. The bridge must be in some circuit. Since the circuit ends are at
the same vertex at which it starts, if we view the beginning vertex of the
circuit containing the bridge as one end of the bridge (followed, in the
circuit, be traversing the bridge) then we enter the back of the graph that
does not contain the beginning vertex. Then the only way to return to the
beginning vertex is to return to the bank containing this vertex and this
can only be done by “crossing” the bridge again in the opposite direction:

() Introduction to Graph Theory January 30, 2023 3 / 21



Theorem 10.2.1

Theorem 10.2.1

Theorem 10.2.1. If a graph G has a bridge, then for any rotation ρ of G ,
the bridge occurs in both directions in one circuit induced by ρ.

Proof. The bridge must be in some circuit. Since the circuit ends are at
the same vertex at which it starts, if we view the beginning vertex of the
circuit containing the bridge as one end of the bridge (followed, in the
circuit, be traversing the bridge) then we enter the back of the graph that
does not contain the beginning vertex. Then the only way to return to the
beginning vertex is to return to the bank containing this vertex and this
can only be done by “crossing” the bridge again in the opposite direction:

() Introduction to Graph Theory January 30, 2023 3 / 21



Theorem 10.2.2

Theorem 10.2.2

Theorem 10.2.2. If H is a subgraph of a planar graph G , then H is
planar.

Proof. Let G be a planar graph with p vertices, q edges, an planar
rotation ρ (so we have p − q + r(ρ) = 2). We consider connected graph G
and graph H = G − e for some edge of G . Since each subgraph of G
results from successively deleting edges (and isolated vertices) from G ,
then if we show that H = G − e is planar, this is sufficient (by induction).
We consider three cases.

Case 1. Suppose one of the endpoints of e, say x , has degree 1. Then
G − e equals G − x plus an isolated vertex (namely, vertex x), and so e is
a bridge of G . Now G − x has p − 1 vertices and q − 1 edges. Let ρ̂ be
the rotation of G − x that is the same as ρ everywhere but at the other
end of e, say vertex y , where edge e is deleted from the rotation. Now the
circuit in G that contains edge e, must contain it in both directions by
Theorem 10.2.1.
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Theorem 10.2.2

Theorem 10.2.2 (continued 1)

Theorem 10.2.2. If H is a subgraph of a planar graph G , then H is
planar.

Proof (continued). So this circuit in G has a corresponding circuit in
H = G − x . Any other circuit in G , is also a circuit in H = G − x , so that
r(ρ) = r(ρ̂) (in G − x and G , respectively). So for graph G − v ,
(p − 1)− (q − 1) + r(ρ̂) = p − q + r(ρ) = 2, so that G − v is planar and,
hence G − e is planar.

Case 2. Suppose edge e is a bridge of G . Denote the number of edges,
vertices, and circuits on one bank as p1, q1, and r1(ρ̂), and on the other
bank as p2, q2, and r2(ρ̂) (where ρ̂ is the rotation that is the same as ρ
everywhere, except at the ends of edge e, where edge e is deleted from the
rotation). Then we have p1 + p2 = p, q1 + q2 = q − 1, and
r1(ρ̂) + r2(ρ̂) = r(ρ) + 1 (by Theorem 10.2.1, edge e is in one circuit of G
in both directions, so this circuit breaks into two circuits in G − e with one
circuit in each component of G − e).
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Theorem 10.2.2

Theorem 10.2.2 (continued 2)

Theorem 10.2.2. If H is a subgraph of a planar graph G , then H is
planar.

Proof (continued). Since G is planar then p − q + r(ρ) = 2, so that
p − (q − 1) + (r(ρ) + 1) = 4, (p1 + p2)− (q1 + q2) + (r1(ρ̂) + r2(ρ̂)) = 4,
and so (p1 − q1 + r1(ρ̂)) + (p2 − q2 + r2(ρ̂)) = 4. By Theorem 10.1.2,
p1 − q1 + r1(ρ̂) ≤ 2 and p2 − q2 + r2(ρ̂) ≤ 2, so we must have
p1 − q1 + r1(ρ̂) = 2 and p2 − q2 + r2(ρ̂) = 2. So both banks of G − e are
planar, and hence G − e is planar itself, as claimed.

Case 3. Suppose e is not a bridge. The graph G − e has p vertices and
q − 1 edges. Let ρ̂ be the rotation of G − e that is the same as ρ
everywhere except at the ends of e, where edge e is deleted from the
rotation. As in the proof of Theorem 10.1.2 and Figures 10.1.11 and
10.1.12 (below), we have that in G − e either one circuit is replaced with
two (Figure 10.1.11) or two circuits are replaced with one (Figure 10.1.12).
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Theorem 10.2.2

Theorem 10.2.2 (continued 2)

Theorem 10.2.2. If H is a subgraph of a planar graph G , then H is
planar.

Proof (continued).
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Theorem 10.2.2

Theorem 10.2.2 (continued 3)

Theorem 10.2.2. If H is a subgraph of a planar graph G , then H is
planar.

Proof (continued). Hence, either r(ρ̂) = r(ρ)− 1 or r(ρ̂) = r(ρ) + 1. If
r(ρ̂) = r(ρ)− 1, then p − (q − 1) + r(ρ̂) = p − q + 1 + r(ρ)− 1 = 2 and
hence G − e is planar. ASSUME r(ρ̂) = r(ρ) + 1. Then
p − (q − 1) + r(ρ̂) = p − q + 1 + r(ρ) + 1 = 4 > 2, a CONTRADICTION
to Theorem 10.1.2, since G − e is connected. So we must have
r(ρ̂) = r(ρ)− 1, in which case
p − (q − 1) + r(ρ̂) = p − q + 1 + r(ρ)− 1 = 2 and hence G − e is planar.

In all three cases, G − e is planar and, as mentioned above, every
subgraph of G is planar, as claimed.
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Theorem 10.2.3

Theorem 10.2.3

Theorem 10.2.3. The complete bipartite graph K3,3 is not planar.

Proof. ASSUME K3,3 is planar. Then there is a rotation ρ of K3,3 such
that p − q + r(ρ) = 2. Since p = 6 and q = 9 for K3,3, then we must have
r(ρ) = 5. Since every edge is used twice in the 5 circuits induced by
rotation ρ, then the average length of a circuit is 18/5 = 3 3/5. So at
least one of the circuits has length 3.

But the shortest circuit in K3,3 has
length 4 (notice that no circuit is length 2 since each vertex of K3,3 is
degree 3 > 1, and can have no circuit of length 3 since K3,3 is bipartite), a
CONTRADICTION. So the assumption that K3,3 is planar is false and, in
fact, K3,3 is no planar, as claimed.

() Introduction to Graph Theory January 30, 2023 9 / 21



Theorem 10.2.3

Theorem 10.2.3

Theorem 10.2.3. The complete bipartite graph K3,3 is not planar.

Proof. ASSUME K3,3 is planar. Then there is a rotation ρ of K3,3 such
that p − q + r(ρ) = 2. Since p = 6 and q = 9 for K3,3, then we must have
r(ρ) = 5. Since every edge is used twice in the 5 circuits induced by
rotation ρ, then the average length of a circuit is 18/5 = 3 3/5. So at
least one of the circuits has length 3. But the shortest circuit in K3,3 has
length 4 (notice that no circuit is length 2 since each vertex of K3,3 is
degree 3 > 1, and can have no circuit of length 3 since K3,3 is bipartite), a
CONTRADICTION. So the assumption that K3,3 is planar is false and, in
fact, K3,3 is no planar, as claimed.

() Introduction to Graph Theory January 30, 2023 9 / 21



Theorem 10.2.3

Theorem 10.2.3

Theorem 10.2.3. The complete bipartite graph K3,3 is not planar.

Proof. ASSUME K3,3 is planar. Then there is a rotation ρ of K3,3 such
that p − q + r(ρ) = 2. Since p = 6 and q = 9 for K3,3, then we must have
r(ρ) = 5. Since every edge is used twice in the 5 circuits induced by
rotation ρ, then the average length of a circuit is 18/5 = 3 3/5. So at
least one of the circuits has length 3. But the shortest circuit in K3,3 has
length 4 (notice that no circuit is length 2 since each vertex of K3,3 is
degree 3 > 1, and can have no circuit of length 3 since K3,3 is bipartite), a
CONTRADICTION. So the assumption that K3,3 is planar is false and, in
fact, K3,3 is no planar, as claimed.

() Introduction to Graph Theory January 30, 2023 9 / 21



Theorem 10.2.5

Theorem 10.2.5

Theorem 10.2.5. A maximal planar graph G with three or more vertices
is connected and has no bridge.

Proof. Let G be a maximal planar graph with p vertices and q edges, and
planar rotation ρ. ASSUME G is not connected. Then each of its
components is planar since G is planar (by the definition of . Suppose one
component has p1 vertices, q1 edges, and r1(ρ) circuits, and another
component has p2 vertices, q2 edges, and r2(ρ) circuits. Then
p1 − q1 + r1(ρ) = 2 and p2 − q2 + r2(ρ) = 2, by the definition of planar of
a non-connected graph.

Add a new edge to G which joins the first
component to the second component, creating a new component. This
new edge will be a bridge in the new graph and two circuits of G will be
replaced by one in the new graph, as in Case 2 of the proof of Theorem
10.2.2 (where a bridge was removed instead of introduced). So the new
component has p1 + p2 vertices, q1 + q2 + 1 edges (because of the new
edge), and r1(ρ) + r2(ρ)− 1 circuits (since two circuits were replaced with
one).
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Theorem 10.2.5

Theorem 10.2.5 (continued 1)

Proof (continued). In the new component we have

(p1 + p2)− (q1 + q2 + 1) + (r1(ρ) + r2(ρ)− 1)

= (p1 − q1 + r1(ρ)) + (p2 − q2 + r2(ρ))− 2 = 2 + 2− 2 = 2,

so the new component is planar and hence the new graph with one more
edge than graph G is planar. But this is a CONTRADICTION to the
hypothesis that G is maximal planar. So the assumption that G is not
connected is false, and hence G is connected, as claimed.

We now show that G cannot have a bridge, by contradiction. ASSUME G
has a bridge. Since G has at least three vertices, one bank has more than
one vertex. Denote the endpoints of the bridge by 1 and 2, and WLOG
assume that vertex 3 is adjacent to vertex 1 and is on the same circuit as
the bridge in a planar rotation of G (notice that the bridge is in only one
circuit, by Theorem 10.2.1). See Figure 10.2.1 left (below).
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Theorem 10.2.5

Theorem 10.2.5 (continued 2)

Proof (continued).

We now add an edge e joining vertices 2 and 3. Choose the rotation ρ̂ of
G + e that is the same as ρ everywhere, except at vertices 2 and 3. If, in
terms of a scheme representation of ρ at vertices 2 and 3, we have

2. · · · x 1 y · · · and 3. · · · z 1 w · · · ,

then define ρ̂ at vertices 2 and 3 as

2. · · · x 3 1 y · · · and 3. · · · z 1 2 w · · · .
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Theorem 10.2.5

Theorem 10.2.5 (continued 3)

Theorem 10.2.5. A maximal planar graph G with three or more vertices
is connected and has no bridge.

Proof (continued). We then have that r(ρ̂) = r(ρ) + 1 (see Figure 10.2.1
right), since the one circuit containing the bridge in G becomes two
circuits in G − e (one of which is of length three). Graph G + e has q + 1
edges, so p − (q + 1) + r(ρ̂) = p − q − 1 + r(ρ) + 1 = p − q + r(ρ) = 2.
But we have added an edge between two nonadjacent vertices in G ,
producing G + e that is still planar. This CONTRADICTS the assumption
that G is a maximal planar graph. So the assumption that G has a bridge
is false, and hence G contains no bridge, as claimed.

We have shown that G is connected and G has no bridge, as claimed.
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Theorem 10.2.6

Theorem 10.2.6

Theorem 10.2.6. Every planar rotation ρ of a maximal planar graph has
the property that every circuit induced by ρ has length three.

“Proof.” We give a proof by contradiction. ASSUME G is is a maximal
planar graph with planar rotation ρ and with the property that at least one
circuit induced by ρ has length greater than three. Let G have p vertices
and q edges. We consider three cases.

Case 1. ASSUME there is a circuit of length five or more induced by
rotation ρ with all vertices distinct (and, therefore, a cycle in G ), as in
Figure 10.2.2 (left) below. Then at least one pair of vertices on the cycle
is not adjacent, since otherwise the given graph would contain a subgraph
isomorphic to K5, K5 is not planar by Theorem 10.2.4, and then we would
have that G is not planar by the contrapositive of Theorem 10.2.2.
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Theorem 10.2.6

Theorem 10.2.6 (continued 1)

“Proof” (continued).

Suppose that vertex 1 is not adjacent to vertex 4. Add the edge e between
vertices 1 and 4, obtaining a new graph G + e, and define the rotation ρ̂
of G + e to be the same as ρ everywhere, except at vertices 1 and 4. At
vertices 1 and 4 the rotation is as suggested by Figure 10.2.2 right. Then
G + e has q + 1 edges and r(ρ̂) = r(ρ) + 1, so that
p − (q + 1) + r(ρ̂) = p − q − 1 + r(ρ) + 1 = p − q + r(ρ) = 2, and G + e
is planar. But this is a CONTRADICTION, since G is a maximal planar
graph. So the assumption that G has a circuit of length five or more with
all vertices distinct is false.
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Theorem 10.2.6

Theorem 10.2.6 (continued 2)

“Proof” (continued). Case 2. ASSUME there is a circuit induced by ρ
of length four that is a cycle. If any two of the vertices of the cycle are not
adjacent, then we add an edge as in Case 1 and get a contradiction. So
suppose that all four vertices are mutually adjacent, as in Figure 10.2.3
left (notice that vertices 1 and 3 are adjacent, and vertices 2 and 4 are
adjacent, though the drawing given here has a crossing).

We construct a new graph Ĝ from G by adding a vertex 0 and connecting
it to all four vertices of the cycle (Figure 10.2.3 right).
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Theorem 10.2.6

Theorem 10.2.6 (continued 3)

Theorem 10.2.6. Every planar rotation ρ of a maximal planar graph has
the property that every circuit induced by ρ has length three.

“Proof” (continued). Define the rotation ρ̂ of Ĝ to be the same as ρ
everywhere, except at vertices 1, 2, 3, 4, and 0. At these vertices, define ρ̂
as suggested by Figure 10.2.3 right. So Ĝ has p + 1 vertices, q + 4 edges,
and r(ρ̂) = r(ρ) + 3. Thus, for Ĝ we have
(p + 1)− (q + 4) + r(ρ̂) = p− 3− 3 + (r(ρ) + 3) = p− q + r(ρ) = 2, since
G is planar. Therefore Ĝ is planar. But Ĝ contains a subgraph isomorphic
to K5 on vertices 0, 1, 2, 3, 4, 5. But K5 is not planar by Theorem 10.2.4,
so that G is not planar by the contrapositive of Theorem 10.2.2. But this
is a CONTRADICTION to the fact that G is planar. So the assumption
that G contains a circuit induced by ρ of length four that is a cycle is false.
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Theorem 10.2.6

Theorem 10.2.6 (continued 4)

“Proof” (continued). Case 3. ASSUME G contains a circuit of length
at least eight with a repeated edge, as in Figure 10.2.4 left.

If any odd-numbered vertex is not adjacent to any even-numbered vertex,
then add the edge joining these vertices and the new graph is still planar,
giving a contradiction as in Case 1 (since this increases the number of
circuits by one and increases the number of edges by one). So we must
have all odd-numbered vertices adjacent to all even-numbered vertices.
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Theorem 10.2.6

Theorem 10.2.6 (continued 5)

Theorem 10.2.6. Every planar rotation ρ of a maximal planar graph has
the property that every circuit induced by ρ has length three.

“Proof” (continued). But then G contains a subgraph isomorphic to
K3,3. But K3,3 is not planar by Theorem 10.2.3, so that G is not planar by
the contrapositive of Theorem 10.2.2. But this is a CONTRADICTION to
the fact that G is planar. So the assumption that G contains a circuit of
length at least eight with a repeated edge is false.

We have shown that in G : there is no circuit induced by ρ of length four
that is a cycle (in Case 2), there is no circuit of length five or more induced
by rotation ρ with all vertices distinct (in Case 1), and there is no circuit of
length at least eight with a repeated edge (in Case 3). From this, the text
concludes that every circuit induced by ρ has length three. So. . . ?
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Theorem 10.2.7

Theorem 10.2.7

Theorem 10.2.7. In a maximal planar graph with p vertices, p ≥ 3, and
q edges we have q = 3p − 6.

Proof. By Theorem 10.2.6, for any planar rotation ρ of a maximal planar
graph, every circuit induced by ρ has length three. Since every edge is
present twice in the collection of circuits, and there are r(ρ) circuits (each
of length three), then 3r(ρ) = 2q. Hence p− q + r(ρ) = p− q + 2q/3 = 2
(because the graph is planar), which implies q = 3p − 6, as claimed.
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Theorem 10.2.9

Theorem 10.2.9

Theorem 10.2.9. A connected graph that can be drawn in the plane with
no crossings has a planar rotation. That is, graphs that are planar under
the definition in Chapter 8 are also planar under the definition in Chapter
10.

Proof. We give a proof by picture. Let
G be a connected graph with p vertices
and q edges that can be drawn in the
plane with no crossings. This results
in some number of regions (or “faces”)
and we assign a rotation to G by giving
every vertex a clockwise rotation. See
Figure 10.2.5. Then the circuits induced
by ρ are the boundaries of the faces in the drawing, and hence
r(ρ) = r .
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