Introduction to Graph Theory

Chapter 10. Graphs on Surfaces

10.3. The Genus of a Graph—Proofs of Theorems

Introduction to Graph Theory

March 14, 2023 1

1 / 8

Theorem 10.33

Theorem 10.3.3

Theorem 10.3.3. For the complete bipartite graph $K_{m,n}$,

$$\gamma(K_{m,n})\geq \frac{(m-2)(n-2)}{4}.$$

Proof. Since $K_{m,n}$ is bipartite, then for any rotation ρ of $K_{m,n}$, the shortest circuit induced by ρ has length at least four (see Notes 10.3.C and 10.3.D). Since each edge appears twice in the circuits (once in each direction), then $2q \geq 4r(\rho)$ or $q/2 \geq r(\rho)$. In $K_{m,n}$ we have p=m+n and q=mn, so that $q/2=mn/2 \geq r(\rho)$. With $g=\gamma(K_{m,n})$ we have for a maximal rotation ρ of $K_{m,n}$ that $p-q+r(\rho)=2-2g$, or $(m+n)-(mn)+(mn/2)\geq p-q+r(\rho)=2-2g$ or $2g\geq mn/2-m-n+2$ or $g\geq (mn-2m-2n+4)/4$, so that $\gamma(K_{m,n})\geq (m-2)(n-2)/4$, as claimed.

Introduction to Graph Theory

Corollary 10.3

Corollary 10.3.A (continued)

Corollary 10.3.A. For the complete bipartite graph $K_{m,n}$ where m and n are both even,

$$\gamma(K_{m,n})=\frac{(m-2)(n-2)}{4}.$$

Proof (continued). With $g=\gamma(K_{m,n})$ we have for a maximal rotation ρ that $p-q+r(\rho)=2-2g$, or $(m+n)-(mn)+(mn/2)=p-q+r(\rho)=2-2g$ or 2g=mn/2-m-n+2 or g=(mn-2m-2n+4)/4, so that $\gamma(K_{m,n})=(m-2)(n-2)/4$, as claimed.

Corollary 10.3.A

Corollary 10.3.A. For the complete bipartite graph $K_{m,n}$ where m and n are both even,

$$\gamma(K_{m,n})=\frac{(m-2)(n-2)}{4}.$$

Proof. Let the vertex set be $\{0,2,4,\ldots,m-2\}\cup\{1,3,5,\ldots,n-1\}$ where the partite sets consider of the even labeled vertices and the odd labeled vertices, respectively. Consider the rotation ρ with the scheme:

0 (mod 4). 1 3 5
$$\cdots$$
 $n-3$ $n-1$
2 (mod 4). $n-1$ $n-3$ $n-5$ \cdots 3 1
1 (mod 4). 0 2 4 \cdots $m-4$ $m-2$
3 (mod 4). $m-2$ $m-4$ $m-6$ \cdots 2 0

It is to be shown in Exercise 10.3.5 that every induced cycle is of length four. So by Theorem 10.3.2, ρ is a maximal rotation of $K_{m,n}$.

March 14, 2023

Theorem 10.3.5

Theorem 10.3.5. The genus of the complete graph satisfies the inequality

$$\gamma(K_n) \geq \frac{(n-3)(n-4)}{12}.$$

Proof. Let G be a graph with p vertices, q edges, and and maximal rotation ρ . Then be the new definition of genus g, we have $p-q+r(\rho)=2-2g$. The shortest circuit possible is of length three (by Note 10.3.C), and every edge is used twice in circuits (once in each direction), so $2q \ge r(\rho)$. Therefore, $p-q+2q/3 \ge 2-2g$, or $2g \ge 2-p+q/3$. For $G=K_n$, then p=n and q=n(n-1)/2, so that $2g \ge 2-n+n(n-1)/6$ or $2g \ge 2-n+n(n-1)/6=(n^2-7n+12)/6$, and hence g > (n-3)(n-4)/12 as claimed.

Introduction to Graph Theory

March 14, 2023

6 / 8

Theorem 10.3.7 Heavened's Theorem

Theorem 10.3.7. Heawood's Theorem (continued)

Theorem 10.3.7. If G is critical and $\gamma(G) \leq g$, where $g \geq 1$, then

$$\chi(G) \leq \frac{7 + \sqrt{1 + 48g}}{2}.$$

Proof. ... $\chi^2 - 7\chi - (12g - 12) \le 0$. By the quadratic formula, we can factor the inequality as

$$\left(\chi - \frac{7 + \sqrt{1 + 48g}}{2}\right) \left(\chi - \frac{7 - \sqrt{1 - 48g}}{2}\right) \le 0.$$

Since $g \ge 1$, then $\sqrt{1+48g} \ge 7$ and $-\frac{7-\sqrt{1+48g}}{2} \ge 0$. Since $\chi \ge 1$, the second factor is always positive. Since the product is nonpositive, then the first factor is at most 0 and hence we have

$$\chi - \frac{7 + \sqrt{1 + 48g}}{2} \le 0 \text{ or } \chi(G) \le \frac{7 + \sqrt{1 + 48g}}{2}.$$

Introduction to Graph Theory March 14, 2023

Since $\chi(G)$ is a whole number, we can round up, as claimed.

Theorem 10.3.7 Heawood's Theorem

Theorem 10.3.7. Heawood's Theorem

Theorem 10.3.7. If G is critical and $\gamma(G) \leq g$, where $g \geq 1$, then

$$\chi(G) \leq \frac{7 + \sqrt{1 + 48g}}{2}.$$

Proof. Let G be a critical graph with chromatic number χ . By Theorem 2.1.4, we have $(\chi-1)p\leq 2q$. Since for any rotation we have $\gamma(G)\leq g$, then there exists a maximal rotation ρ of G such that

$$p - q + r(\rho) \ge 2 - 2g$$
 or $q - r(\rho) \le p - (2 - 2g)$ or

 $3q - 3r(\rho) \le 3p - 3(2 - 2g)$. The minimum possible length of a circuit is 3, so $2q \ge 3r(\rho)$ and we now have

 $3q \leq 3r(\rho)+3p-3(2-2g) \leq 2q+3p-3(2-2g)$ or $q \leq 3p-6+6g$ or $2q \leq 6p-12+12g$. Combining this with Theorem 2.1.4, we have $(\chi-1)p \leq 6p-12+12g$ or $\chi-1 \leq 6+(12g-12)/p$. Since $g \geq 1$ (so that $12g-12 \geq 0$) by hypothesis and $p \geq \chi$ (since χ involves vertex colorings; do that $p \leq 1/\chi$, then we have $\chi-1 \leq 6+(12g-12)/\chi$ and $\chi^2-\chi \leq 5\chi+12g-12$ or $\chi^2-7\chi-(12g-12)\leq 0$.

Introduction to Graph Theory

March 14, 2023 7