Introduction to Graph Theory

Chapter 10. Graphs on Surfaces 10.3. The Genus of a Graph—Proofs of Theorems

- **D** Theorem 10.3.3
- 2 Corollary 10.3.A
- 3 Theorem 10.3.5
- Theorem 10.3.A
- 5 Theorem 10.3.7. Heawood's Theorem

Theorem 10.3.3. For the complete bipartite graph $K_{m,n}$,

$$\gamma(K_{m,n}) \geq \frac{(m-2)(n-2)}{4}$$

Proof. Since $K_{m,n}$ is bipartite, then for any rotation ρ of $K_{m,n}$, the shortest circuit induced by ρ has length at least four (see Notes 10.3.C and 10.3.D). Since each edge appears twice in the circuits (once in each direction), then $2q \ge 4r(\rho)$ or $q/2 \ge r(\rho)$. In $K_{m,n}$ we have p = m + n and q = mn, so that $q/2 = mn/2 \ge r(\rho)$.

Theorem 10.3.3. For the complete bipartite graph $K_{m,n}$,

$$\gamma(\mathcal{K}_{m,n}) \geq \frac{(m-2)(n-2)}{4}$$

Proof. Since $K_{m,n}$ is bipartite, then for any rotation ρ of $K_{m,n}$, the shortest circuit induced by ρ has length at least four (see Notes 10.3.C and 10.3.D). Since each edge appears twice in the circuits (once in each direction), then $2q \ge 4r(\rho)$ or $q/2 \ge r(\rho)$. In $K_{m,n}$ we have p = m + n and q = mn, so that $q/2 = mn/2 \ge r(\rho)$. With $g = \gamma(K_{m,n})$ we have for a maximal rotation ρ of $K_{m,n}$ that $p - q + r(\rho) = 2 - 2g$, or $(m + n) - (mn) + (mn/2) \ge p - q + r(\rho) = 2 - 2g$ or $2g \ge mn/2 - m - n + 2$ or $g \ge (mn - 2m - 2n + 4)/4$, so that $\gamma(K_{m,n}) \ge (m - 2)(n - 2)/4$, as claimed.

Theorem 10.3.3. For the complete bipartite graph $K_{m,n}$,

$$\gamma(\mathcal{K}_{m,n}) \geq \frac{(m-2)(n-2)}{4}$$

Proof. Since $K_{m,n}$ is bipartite, then for any rotation ρ of $K_{m,n}$, the shortest circuit induced by ρ has length at least four (see Notes 10.3.C and 10.3.D). Since each edge appears twice in the circuits (once in each direction), then $2q \ge 4r(\rho)$ or $q/2 \ge r(\rho)$. In $K_{m,n}$ we have p = m + n and q = mn, so that $q/2 = mn/2 \ge r(\rho)$. With $g = \gamma(K_{m,n})$ we have for a maximal rotation ρ of $K_{m,n}$ that $p - q + r(\rho) = 2 - 2g$, or $(m+n) - (mn) + (mn/2) \ge p - q + r(\rho) = 2 - 2g$ or $2g \ge mn/2 - m - n + 2$ or $g \ge (mn - 2m - 2n + 4)/4$, so that $\gamma(K_{m,n}) \ge (m-2)(n-2)/4$, as claimed.

Corollary 10.3.A

Corollary 10.3.A. For the complete bipartite graph $K_{m,n}$ where *m* and *n* are both even,

$$\gamma(K_{m,n})=\frac{(m-2)(n-2)}{4}$$

Proof. Let the vertex set be $\{0, 2, 4, \dots, m-2\} \cup \{1, 3, 5, \dots, n-1\}$ where the partite sets consider of the even labeled vertices and the odd labeled vertices, respectively. Consider the rotation ρ with the scheme:

0 (mod 4).	1	3	5	 n — 3	n - 1
2 (mod 4).	n - 1	п — З	n — 5	 3	1
1 (mod 4).	0	2	4	 <i>m</i> – 4	m - 2
3 (mod 4).	<i>m</i> – 2	<i>m</i> – 4	<i>m</i> – 6	 2	0

It is to be shown in Exercise 10.3.5 that every induced cycle is of length four. So by Theorem 10.3.2, ρ is a maximal rotation of $K_{m,n}$.

Corollary 10.3.A

Corollary 10.3.A. For the complete bipartite graph $K_{m,n}$ where *m* and *n* are both even,

$$\gamma(\mathcal{K}_{m,n})=\frac{(m-2)(n-2)}{4}$$

Proof. Let the vertex set be $\{0, 2, 4, ..., m-2\} \cup \{1, 3, 5, ..., n-1\}$ where the partite sets consider of the even labeled vertices and the odd labeled vertices, respectively. Consider the rotation ρ with the scheme:

0 (mod 4).	1	3	5	•••	<i>n</i> – 3	n-1
2 (mod 4).	n-1	<i>n</i> – 3	<i>n</i> – 5	•••	3	1
1 (mod 4).	0	2	4	•••	<i>m</i> – 4	<i>m</i> – 2
3 (mod 4).	<i>m</i> – 2	<i>m</i> – 4	<i>m</i> – 6	•••	2	0

It is to be shown in Exercise 10.3.5 that every induced cycle is of length four. So by Theorem 10.3.2, ρ is a maximal rotation of $K_{m,n}$.

Corollary 10.3.A (continued)

Corollary 10.3.A. For the complete bipartite graph $K_{m,n}$ where *m* and *n* are both even,

$$\gamma(K_{m,n})=\frac{(m-2)(n-2)}{4}$$

Proof (continued). With $g = \gamma(K_{m,n})$ we have for a maximal rotation ρ that $p - q + r(\rho) = 2 - 2g$, or $(m + n) - (mn) + (mn/2) = p - q + r(\rho) = 2 - 2g$ or 2g = mn/2 - m - n + 2 or g = (mn - 2m - 2n + 4)/4, so that $\gamma(K_{m,n}) = (m - 2)(n - 2)/4$, as claimed.

Theorem 10.3.5. The genus of the complete graph satisfies the inequality

$$\gamma(\mathcal{K}_n) \geq \frac{(n-3)(n-4)}{12}.$$

Proof. Let *G* be a graph with *p* vertices, *q* edges, and and maximal rotation ρ . Then be the new definition of genus *g*, we have $p - q + r(\rho) = 2 - 2g$. The shortest circuit possible is of length three (by Note 10.3.C), and every edge is used twice in circuits (once in each direction), so $2q \ge r(\rho)$. Therefore, $p - q + 2q/3 \ge 2 - 2g$, or $2g \ge 2 - p + q/3$. For $G = K_n$, then p = n and q = n(n-1)/2, so that $2g \ge 2 - n + n(n-1)/6$ or $2g \ge 2 - n + n(n-1)/6 = (n^2 - 7n + 12)/6$, and hence $g \ge (n-3)(n-4)/12$ as claimed.

Theorem 10.3.5. The genus of the complete graph satisfies the inequality

$$\gamma(\mathcal{K}_n) \geq \frac{(n-3)(n-4)}{12}.$$

Proof. Let *G* be a graph with *p* vertices, *q* edges, and and maximal rotation ρ . Then be the new definition of genus *g*, we have $p - q + r(\rho) = 2 - 2g$. The shortest circuit possible is of length three (by Note 10.3.C), and every edge is used twice in circuits (once in each direction), so $2q \ge r(\rho)$. Therefore, $p - q + 2q/3 \ge 2 - 2g$, or $2g \ge 2 - p + q/3$. For $G = K_n$, then p = n and q = n(n-1)/2, so that $2g \ge 2 - n + n(n-1)/6$ or $2g \ge 2 - n + n(n-1)/6 = (n^2 - 7n + 12)/6$, and hence $g \ge (n-3)(n-4)/12$ as claimed.

Theorem 10.3.7. Heawood's Theorem

Theorem 10.3.7. If G is critical and $\gamma(G) \leq g$, where $g \geq 1$, then

$$\chi(G) \leq \frac{7 + \sqrt{1 + 48g}}{2}$$

Proof. Let G be a critical graph with chromatic number χ . By Theorem 2.1.4, we have $(\chi - 1)p \leq 2q$. Since for any rotation we have $\gamma(G) \leq g$, then there exists a maximal rotation ρ of G such that $p - q + r(\rho) \geq 2 - 2g$ or $q - r(\rho) \leq p - (2 - 2g)$ or

 $3q - 3r(\rho) \le 3p - 3(2 - 2g)$. The minimum possible length of a circuit is 3, so $2q \ge 3r(\rho)$ and we now have

 $3q \le 3r(\rho) + 3p - 3(2 - 2g) \le 2q + 3p - 3(2 - 2g)$ or $q \le 3p - 6 + 6g$ or $2q \le 6p - 12 + 12g$.

Theorem 10.3.7. Heawood's Theorem

Theorem 10.3.7. If G is critical and $\gamma(G) \leq g$, where $g \geq 1$, then

$$\chi(G) \leq \frac{7 + \sqrt{1 + 48g}}{2}$$

Proof. Let G be a critical graph with chromatic number χ . By Theorem 2.1.4, we have $(\chi - 1)p \leq 2q$. Since for any rotation we have $\gamma(G) \leq q$, then there exists a maximal rotation ρ of G such that $p - q + r(\rho) > 2 - 2g$ or $q - r(\rho) or$ $3q - 3r(\rho) \leq 3p - 3(2 - 2g)$. The minimum possible length of a circuit is 3, so $2q > 3r(\rho)$ and we now have $3q \leq 3r(\rho) + 3p - 3(2 - 2g) \leq 2q + 3p - 3(2 - 2g)$ or $q \leq 3p - 6 + 6g$ or 2q < 6p - 12 + 12g. Combining this with Theorem 2.1.4, we have $(\chi - 1)p \le 6p - 12 + 12g$ or $\chi - 1 \le 6 + (12g - 12)/p$. Since $g \ge 1$ (so that 12g - 12 > 0) by hypothesis and $p > \chi$ (since χ involves vertex colorings; do that $p \leq 1/\chi$, then we have $\chi - 1 \leq 6 + (12g - 12)/\chi$ and $\chi^2 - \chi < 5\chi + 12g - 12$ or $\chi^2 - 7\chi - (12g - 12) < 0$.

Theorem 10.3.7. Heawood's Theorem

Theorem 10.3.7. If G is critical and $\gamma(G) \leq g$, where $g \geq 1$, then

$$\chi(G) \leq \frac{7 + \sqrt{1 + 48g}}{2}$$

Proof. Let G be a critical graph with chromatic number χ . By Theorem 2.1.4, we have $(\chi - 1)p \leq 2q$. Since for any rotation we have $\gamma(G) \leq g$, then there exists a maximal rotation ρ of G such that

 $p-q+r(\rho) \ge 2-2g$ or $q-r(\rho) \le p-(2-2g)$ or $3q-3r(\rho) \le 3p-3(2-2g)$. The minimum possible length of a circuit is 3, so $2q \ge 3r(\rho)$ and we now have $3q \le 3r(\rho) + 3p - 3(2-2g) \le 2q + 3p - 3(2-2g)$ or $q \le 3p - 6 + 6g$ or $2q \le 6p - 12 + 12g$. Combining this with Theorem 2.1.4, we have $(\chi - 1)p \le 6p - 12 + 12g$ or $\chi - 1 \le 6 + (12g - 12)/p$. Since $g \ge 1$ (so that $12g - 12 \ge 0$) by hypothesis and $p \ge \chi$ (since χ involves vertex colorings; do that $/p \le 1/\chi$), then we have $\chi - 1 \le 6 + (12g - 12)/\chi$ and $\chi^2 - \chi \le 5\chi + 12g - 12$ or $\chi^2 - 7\chi - (12g - 12) \le 0$.

Theorem 10.3.7. Heawood's Theorem (continued)

Theorem 10.3.7. If G is critical and $\gamma(G) \leq g$, where $g \geq 1$, then

$$\chi(G) \leq \frac{7 + \sqrt{1 + 48g}}{2}$$

Proof. ... $\chi^2 - 7\chi - (12g - 12) \le 0$. By the quadratic formula, we can factor the inequality as

$$\left(\chi-\frac{7+\sqrt{1+48g}}{2}\right)\left(\chi-\frac{7-\sqrt{1-48g}}{2}\right)\leq 0.$$

Since $g \ge 1$, then $\sqrt{1+48g} \ge 7$ and $-\frac{7-\sqrt{1+48g}}{2} \ge 0$. Since $\chi \ge 1$, the second factor is always positive. Since the product is nonpositive, then the first factor is at most 0 and hence we have

$$\chi - rac{7 + \sqrt{1 + 48g}}{2} \le 0 ext{ or } \chi(G) \le rac{7 + \sqrt{1 + 48g}}{2}$$

Since $\chi(G)$ is a whole number, we can round up, as claimed.