Introduction to Graph Theory

Chapter 10. Graphs on Surfaces

10.3. The Genus of a Graph—Proofs of Theorems

Pearls in Graph Theorц
 A Comprethensive Introduction
 Nora Hartsfield Gerhard Ringel

Table of contents

(1) Theorem 10.3.3
(2) Corollary 10.3.A
(3) Theorem 10.3.5
(4) Theorem 10.3.A
(5) Theorem 10.3.7. Heawood's Theorem

Theorem 10.3.3

Theorem 10.3.3. For the complete bipartite graph $K_{m, n}$,

$$
\gamma\left(K_{m, n}\right) \geq \frac{(m-2)(n-2)}{4} .
$$

Proof. Since $K_{m, n}$ is bipartite, then for any rotation ρ of $K_{m, n}$, the shortest circuit induced by ρ has length at least four (see Notes 10.3.C and 10.3.D). Since each edge appears twice in the circuits (once in each direction), then $2 q \geq 4 r(\rho)$ or $q / 2 \geq r(\rho)$. In $K_{m, n}$ we have $p=m+n$ and $q=m n$, so that $q / 2=m n / 2 \geq r(\rho)$.

Theorem 10.3.3

Theorem 10.3.3. For the complete bipartite graph $K_{m, n}$,

$$
\gamma\left(K_{m, n}\right) \geq \frac{(m-2)(n-2)}{4}
$$

Proof. Since $K_{m, n}$ is bipartite, then for any rotation ρ of $K_{m, n}$, the shortest circuit induced by ρ has length at least four (see Notes 10.3.C and 10.3.D). Since each edge appears twice in the circuits (once in each direction), then $2 q \geq 4 r(\rho)$ or $q / 2 \geq r(\rho)$. In $K_{m, n}$ we have $p=m+n$ and $q=m n$, so that $q / 2=m n / 2 \geq r(\rho)$. With $g=\gamma\left(K_{m, n}\right)$ we have for a maximal rotation ρ of $K_{m, n}$ that $p-q+r(\rho)=2-2 g$, or $(m+n)-(m n)+(m n / 2) \geq p-q+r(\rho)=2-2 g$ or $2 g \geq m n / 2-m-n+2$ or $g \geq(m n-2 m-2 n+4) / 4$, so that $\gamma\left(K_{m, n}\right) \geq(m-2)(n-2) / 4$, as claimed.

Theorem 10.3.3

Theorem 10.3.3. For the complete bipartite graph $K_{m, n}$,

$$
\gamma\left(K_{m, n}\right) \geq \frac{(m-2)(n-2)}{4}
$$

Proof. Since $K_{m, n}$ is bipartite, then for any rotation ρ of $K_{m, n}$, the shortest circuit induced by ρ has length at least four (see Notes 10.3.C and 10.3.D). Since each edge appears twice in the circuits (once in each direction), then $2 q \geq 4 r(\rho)$ or $q / 2 \geq r(\rho)$. In $K_{m, n}$ we have $p=m+n$ and $q=m n$, so that $q / 2=m n / 2 \geq r(\rho)$. With $g=\gamma\left(K_{m, n}\right)$ we have for a maximal rotation ρ of $K_{m, n}$ that $p-q+r(\rho)=2-2 g$, or $(m+n)-(m n)+(m n / 2) \geq p-q+r(\rho)=2-2 g$ or $2 g \geq m n / 2-m-n+2$ or $g \geq(m n-2 m-2 n+4) / 4$, so that $\gamma\left(K_{m, n}\right) \geq(m-2)(n-2) / 4$, as claimed.

Corollary 10.3.A

Corollary 10.3.A. For the complete bipartite graph $K_{m, n}$ where m and n are both even,

$$
\gamma\left(K_{m, n}\right)=\frac{(m-2)(n-2)}{4} .
$$

Proof. Let the vertex set be $\{0,2,4, \ldots, m-2\} \cup\{1,3,5, \ldots, n-1\}$ where the partite sets consider of the even labeled vertices and the odd labeled vertices, respectively. Consider the rotation ρ with the scheme:

$0(\bmod 4)$.	1	3	5	\cdots	$n-3$	$n-1$
$2(\bmod 4)$.	$n-1$	$n-3$	$n-5$	\cdots	3	1
$1(\bmod 4)$.	0	2	4	\cdots	$m-4$	$m-2$
$3(\bmod 4)$.	$m-2$	$m-4$	$m-6$	\cdots	2	0

It is to be shown in Exercise 10.3.5 that every induced cycle is of length four. So by Theorem 10.3.2, ρ is a maximal rotation of $K_{m, n}$.

Corollary 10.3.A

Corollary 10.3.A. For the complete bipartite graph $K_{m, n}$ where m and n are both even,

$$
\gamma\left(K_{m, n}\right)=\frac{(m-2)(n-2)}{4} .
$$

Proof. Let the vertex set be $\{0,2,4, \ldots, m-2\} \cup\{1,3,5, \ldots, n-1\}$ where the partite sets consider of the even labeled vertices and the odd labeled vertices, respectively. Consider the rotation ρ with the scheme:

$0(\bmod 4)$.	1	3	5	\cdots	$n-3$	$n-1$
$2(\bmod 4)$.	$n-1$	$n-3$	$n-5$	\cdots	3	1
$1(\bmod 4)$.	0	2	4	\cdots	$m-4$	$m-2$
$3(\bmod 4)$.	$m-2$	$m-4$	$m-6$	\cdots	2	0

It is to be shown in Exercise 10.3.5 that every induced cycle is of length four. So by Theorem 10.3.2, ρ is a maximal rotation of $K_{m, n}$.

Corollary 10.3.A (continued)

Corollary 10.3.A. For the complete bipartite graph $K_{m, n}$ where m and n are both even,

$$
\gamma\left(K_{m, n}\right)=\frac{(m-2)(n-2)}{4} .
$$

Proof (continued). With $g=\gamma\left(K_{m, n}\right)$ we have for a maximal rotation ρ that $p-q+r(\rho)=2-2 g$, or $(m+n)-(m n)+(m n / 2)=p-q+r(\rho)=2-2 g$ or $2 g=m n / 2-m-n+2$ or $g=(m n-2 m-2 n+4) / 4$, so that $\gamma\left(K_{m, n}\right)=(m-2)(n-2) / 4$, as claimed.

Theorem 10.3.5

Theorem 10.3.5. The genus of the complete graph satisfies the inequality

$$
\gamma\left(K_{n}\right) \geq \frac{(n-3)(n-4)}{12}
$$

Proof. Let G be a graph with p vertices, q edges, and and maximal rotation ρ. Then be the new definition of genus g, we have $p-q+r(\rho)=2-2 g$. The shortest circuit possible is of length three (by Note 10.3.C), and every edge is used twice in circuits (once in each direction), so $2 q \geq r(\rho)$. Therefore, $p-q+2 q / 3 \geq 2-2 g$, or $2 g \geq 2-p+q / 3$. For $G=K_{n}$, then $p=n$ and $q=n(n-1) / 2$, so that $2 g \geq 2-n+n(n-1) / 6$ or $2 g \geq 2-n+n(n-1) / 6=\left(n^{2}-7 n+12\right) / 6$, and hence $g \geq(n-3)(n-4) / 12$ as claimed.

Theorem 10.3.5

Theorem 10.3.5. The genus of the complete graph satisfies the inequality

$$
\gamma\left(K_{n}\right) \geq \frac{(n-3)(n-4)}{12}
$$

Proof. Let G be a graph with p vertices, q edges, and and maximal rotation ρ. Then be the new definition of genus g, we have $p-q+r(\rho)=2-2 g$. The shortest circuit possible is of length three (by Note 10.3.C), and every edge is used twice in circuits (once in each direction), so $2 q \geq r(\rho)$. Therefore, $p-q+2 q / 3 \geq 2-2 g$, or $2 g \geq 2-p+q / 3$. For $G=K_{n}$, then $p=n$ and $q=n(n-1) / 2$, so that $2 g \geq 2-n+n(n-1) / 6$ or $2 g \geq 2-n+n(n-1) / 6=\left(n^{2}-7 n+12\right) / 6$, and hence $g \geq(n-3)(n-4) / 12$ as claimed.

Theorem 10.3.7. Heawood's Theorem

Theorem 10.3.7. If G is critical and $\gamma(G) \leq g$, where $g \geq 1$, then

$$
\chi(G) \leq \frac{7+\sqrt{1+48 g}}{2}
$$

Proof. Let G be a critical graph with chromatic number χ. By Theorem 2.1.4, we have $(\chi-1) p \leq 2 q$. Since for any rotation we have $\gamma(G) \leq g$, then there exists a maximal rotation ρ of G such that
$p-q+r(\rho) \geq 2-2 g$ or $q-r(\rho) \leq p-(2-2 g)$ or $3 q-3 r(\rho) \leq 3 p-3(2-2 g)$. The minimum possible length of a circuit is 3 , so $2 q \geq 3 r(\rho)$ and we now have $3 q \leq 3 r(p)+3 p-3(2-2 g) \leq 2 q+3 p-3(2-2 g)$ or $q \leq 3 p-6+6 g$ or $2 q \leq 6 p-12+12 g$.

Theorem 10.3.7. Heawood's Theorem

Theorem 10.3.7. If G is critical and $\gamma(G) \leq g$, where $g \geq 1$, then

$$
\chi(G) \leq \frac{7+\sqrt{1+48 g}}{2} .
$$

Proof. Let G be a critical graph with chromatic number χ. By Theorem 2.1.4, we have $(\chi-1) p \leq 2 q$. Since for any rotation we have $\gamma(G) \leq g$, then there exists a maximal rotation ρ of G such that
$p-q+r(\rho) \geq 2-2 g$ or $q-r(\rho) \leq p-(2-2 g)$ or $3 q-3 r(\rho) \leq 3 p-3(2-2 g)$. The minimum possible length of a circuit is 3 , so $2 q \geq 3 r(\rho)$ and we now have $3 q \leq 3 r(\rho)+3 p-3(2-2 g) \leq 2 q+3 p-3(2-2 g)$ or $q \leq 3 p-6+6 g$ or $2 q \leq 6 p-12+12 g$. Combining this with Theorem 2.1.4, we have $(\chi-1) p \leq 6 p-12+12 g$ or $\chi-1 \leq 6+(12 g-12) / p$. Since $g \geq 1$ (so that $12 g-12 \geq 0$) by hypothesis and $p \geq \chi$ (since χ involves vertex colorings; do that $/ p \leq 1 / \chi)$, then we have $\chi-1 \leq 6+(12 g-12) / \chi$ and

Theorem 10.3.7. Heawood's Theorem

Theorem 10.3.7. If G is critical and $\gamma(G) \leq g$, where $g \geq 1$, then

$$
\chi(G) \leq \frac{7+\sqrt{1+48 g}}{2}
$$

Proof. Let G be a critical graph with chromatic number χ. By Theorem 2.1.4, we have $(\chi-1) p \leq 2 q$. Since for any rotation we have $\gamma(G) \leq g$, then there exists a maximal rotation ρ of G such that
$p-q+r(\rho) \geq 2-2 g$ or $q-r(\rho) \leq p-(2-2 g)$ or $3 q-3 r(\rho) \leq 3 p-3(2-2 g)$. The minimum possible length of a circuit is 3 , so $2 q \geq 3 r(\rho)$ and we now have $3 q \leq 3 r(\rho)+3 p-3(2-2 g) \leq 2 q+3 p-3(2-2 g)$ or $q \leq 3 p-6+6 g$ or $2 q \leq 6 p-12+12 g$. Combining this with Theorem 2.1.4, we have $(\chi-1) p \leq 6 p-12+12 g$ or $\chi-1 \leq 6+(12 g-12) / p$. Since $g \geq 1$ (so that $12 g-12 \geq 0$) by hypothesis and $p \geq \chi$ (since χ involves vertex colorings; do that $/ p \leq 1 / \chi)$, then we have $\chi-1 \leq 6+(12 g-12) / \chi$ and $\chi^{2}-\chi \leq 5 \chi+12 g-12$ or $\chi^{2}-7 \chi-(12 g-12) \leq 0$.

Theorem 10.3.7. Heawood's Theorem (continued)

Theorem 10.3.7. If G is critical and $\gamma(G) \leq g$, where $g \geq 1$, then

$$
\chi(G) \leq \frac{7+\sqrt{1+48 g}}{2}
$$

Proof. $\ldots \chi^{2}-7 \chi-(12 g-12) \leq 0$. By the quadratic formula, we can factor the inequality as

$$
\left(\chi-\frac{7+\sqrt{1+48 g}}{2}\right)\left(\chi-\frac{7-\sqrt{1-48 g}}{2}\right) \leq 0 .
$$

Since $g \geq 1$, then $\sqrt{1+48 g} \geq 7$ and $-\frac{7-\sqrt{1+48 g}}{2} \geq 0$. Since $\chi \geq 1$, the second factor is always positive. Since the product is nonpositive, then the first factor is at most 0 and hence we have

$$
\chi-\frac{7+\sqrt{1+48 g}}{2} \leq 0 \text { or } \chi(G) \leq \frac{7+\sqrt{1+48 g}}{2} .
$$

Since $\chi(G)$ is a whole number, we can round up, as claimed.

