
Introduction to Graph Theory

March 14, 2023

Chapter 10. Graphs on Surfaces
10.3. The Genus of a Graph—Proofs of Theorems
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Theorem 10.3.3

Theorem 10.3.3

Theorem 10.3.3. For the complete bipartite graph Km,n,

γ(Km,n) ≥
(m − 2)(n − 2)

4
.

Proof. Since Km,n is bipartite, then for any rotation ρ of Km,n, the
shortest circuit induced by ρ has length at least four (see Notes 10.3.C and
10.3.D). Since each edge appears twice in the circuits (once in each
direction), then 2q ≥ 4r(ρ) or q/2 ≥ r(ρ). In Km,n we have p = m + n
and q = mn, so that q/2 = mn/2 ≥ r(ρ).

With g = γ(Km,n) we have for
a maximal rotation ρ of Km,n that p − q + r(ρ) = 2− 2g , or
(m + n)− (mn) + (mn/2) ≥ p − q + r(ρ) = 2− 2g or
2g ≥ mn/2−m − n + 2 or g ≥ (mn − 2m − 2n + 4)/4, so that
γ(Km,n) ≥ (m − 2)(n − 2)/4, as claimed.
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Corollary 10.3.A

Corollary 10.3.A

Corollary 10.3.A. For the complete bipartite graph Km,n where m and n
are both even,

γ(Km,n) =
(m − 2)(n − 2)

4
.

Proof. Let the vertex set be {0, 2, 4, . . . ,m − 2} ∪ {1, 3, 5, . . . , n − 1}
where the partite sets consider of the even labeled vertices and the odd
labeled vertices, respectively. Consider the rotation ρ with the scheme:

0 (mod 4). 1 3 5 · · · n − 3 n − 1
2 (mod 4). n − 1 n − 3 n − 5 · · · 3 1
1 (mod 4). 0 2 4 · · · m − 4 m − 2
3 (mod 4). m − 2 m − 4 m − 6 · · · 2 0

It is to be shown in Exercise 10.3.5 that every induced cycle is of length
four. So by Theorem 10.3.2, ρ is a maximal rotation of Km,n.
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Corollary 10.3.A

Corollary 10.3.A (continued)

Corollary 10.3.A. For the complete bipartite graph Km,n where m and n
are both even,

γ(Km,n) =
(m − 2)(n − 2)

4
.

Proof (continued). With g = γ(Km,n) we have for a maximal rotation ρ
that p − q + r(ρ) = 2− 2g , or
(m + n)− (mn) + (mn/2) = p − q + r(ρ) = 2− 2g or
2g = mn/2−m − n + 2 or g = (mn − 2m − 2n + 4)/4, so that
γ(Km,n) = (m − 2)(n − 2)/4, as claimed.
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Theorem 10.3.5

Theorem 10.3.5

Theorem 10.3.5. The genus of the complete graph satisfies the inequality

γ(Kn) ≥
(n − 3)(n − 4)

12
.

Proof. Let G be a graph with p vertices, q edges, and and maximal
rotation ρ. Then be the new definition of genus g , we have
p − q + r(ρ) = 2− 2g . The shortest circuit possible is of length three (by
Note 10.3.C), and every edge is used twice in circuits (once in each
direction), so 2q ≥ r(ρ). Therefore, p − q + 2q/3 ≥ 2− 2g , or
2g ≥ 2− p + q/3. For G = Kn, then p = n and q = n(n − 1)/2, so that
2g ≥ 2− n + n(n − 1)/6 or 2g ≥ 2− n + n(n − 1)/6 = (n2 − 7n + 12)/6,
and hence g ≥ (n − 3)(n − 4)/12 as claimed.
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Theorem 10.3.7. Heawood’s Theorem

Theorem 10.3.7. Heawood’s Theorem

Theorem 10.3.7. If G is critical and γ(G ) ≤ g , where g ≥ 1, then

χ(G ) ≤ 7 +
√

1 + 48g

2
.

Proof. Let G be a critical graph with chromatic number χ. By Theorem
2.1.4, we have (χ− 1)p ≤ 2q. Since for any rotation we have γ(G ) ≤ g ,
then there exists a maximal rotation ρ of G such that
p − q + r(ρ) ≥ 2− 2g or q − r(ρ) ≤ p − (2− 2g) or
3q − 3r(ρ) ≤ 3p − 3(2− 2g). The minimum possible length of a circuit is
3, so 2q ≥ 3r(ρ) and we now have
3q ≤ 3r(ρ) + 3p− 3(2− 2g) ≤ 2q + 3p− 3(2− 2g) or q ≤ 3p− 6 + 6g or
2q ≤ 6p − 12 + 12g .

Combining this with Theorem 2.1.4, we have
(χ− 1)p ≤ 6p − 12 + 12g or χ− 1 ≤ 6 + (12g − 12)/p. Since g ≥ 1 (so
that 12g − 12 ≥ 0) by hypothesis and p ≥ χ (since χ involves vertex
colorings; do that /p ≤ 1/χ), then we have χ− 1 ≤ 6 + (12g − 12)/χ and
χ2 − χ ≤ 5χ + 12g − 12 or χ2 − 7χ− (12g − 12) ≤ 0.
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Theorem 10.3.7. Heawood’s Theorem

Theorem 10.3.7. Heawood’s Theorem (continued)

Theorem 10.3.7. If G is critical and γ(G ) ≤ g , where g ≥ 1, then

χ(G ) ≤ 7 +
√

1 + 48g

2
.

Proof. . . .χ2 − 7χ− (12g − 12) ≤ 0. By the quadratic formula, we can
factor the inequality as(

χ− 7 +
√

1 + 48g

2

) (
χ− 7−

√
1− 48g

2

)
≤ 0.

Since g ≥ 1, then
√

1 + 48g ≥ 7 and −7−
√

1 + 48g

2
≥ 0. Since χ ≥ 1,

the second factor is always positive. Since the product is nonpositive, then
the first factor is at most 0 and hence we have

χ− 7 +
√

1 + 48g

2
≤ 0 or χ(G ) ≤ 7 +

√
1 + 48g

2
.

Since χ(G ) is a whole number, we can round up, as claimed.
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