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Chapter 2. Colorings of Graphs
2.1. Vertex Colorings—Proofs of Theorems

() Introduction to Graph Theory January 22, 2021 1 / 8



Table of contents

1 Theorem 2.1.2

2 Theorem 2.1.3

3 Theorem 2.1.4

4 Theorem 2.1.6

() Introduction to Graph Theory January 22, 2021 2 / 8



Theorem 2.1.2

Theorem 2.1.2

Theorem 2.1.2. Every graph G contains a critical subgraph H such that
χ(H) = χ(G ).

Proof. If G is critical, then we can take H = G . If G is not critical, then
there is some proper subgraph H1 of G with χ(H1) = χ(G ) (by the
definition of critical). If H1 is not critical, then there exists a proper
subgraph H2 of H1 such that χ(H2) = χ(H1) = χ(G ) (again, by the
definition of critical). Continuing this process of finding a chain of proper
subgraphs (each with chromatic number equal to χ(G )) there must be
some k ∈ N such that subgraph Hk is critical, since G is finite. So
H = Hk is the desired critical subgraph.

() Introduction to Graph Theory January 22, 2021 3 / 8



Theorem 2.1.2

Theorem 2.1.2

Theorem 2.1.2. Every graph G contains a critical subgraph H such that
χ(H) = χ(G ).

Proof. If G is critical, then we can take H = G . If G is not critical, then
there is some proper subgraph H1 of G with χ(H1) = χ(G ) (by the
definition of critical). If H1 is not critical, then there exists a proper
subgraph H2 of H1 such that χ(H2) = χ(H1) = χ(G ) (again, by the
definition of critical). Continuing this process of finding a chain of proper
subgraphs (each with chromatic number equal to χ(G )) there must be
some k ∈ N such that subgraph Hk is critical, since G is finite. So
H = Hk is the desired critical subgraph.

() Introduction to Graph Theory January 22, 2021 3 / 8



Theorem 2.1.3

Theorem 2.1.3

Theorem 2.1.3. If G is critical with chromatic number χ, then the degree
of each vertex is at least χ− 1.

Proof. Let G be a critical graph with chromatic number 4. ASSUME
there is a vertex v of G where the degree of v is at most 2. Since G is
critical and G − e is a proper subgraph of G , then G − v can be colored
with only three colors. So color the vertices of G − v with three colors,
and color all vertices of G with the same colors, except for vertex v .

Since
v is degree at most 2, then v is adjacent to at most two vertices and so
there is one of the three colors which is not assigned to a neighbor of v .
Assign this color to v in G and we then have a coloring of G . But this is a
CONTRADICTION, since G has chromatic number 4 and hence cannot be
colored with only 3 colors. So the assumption that G has a vertex of
degree at most 2 is false, and hence all vertices of G are degree at least 3,
as claimed.

() Introduction to Graph Theory January 22, 2021 4 / 8



Theorem 2.1.3

Theorem 2.1.3

Theorem 2.1.3. If G is critical with chromatic number χ, then the degree
of each vertex is at least χ− 1.

Proof. Let G be a critical graph with chromatic number 4. ASSUME
there is a vertex v of G where the degree of v is at most 2. Since G is
critical and G − e is a proper subgraph of G , then G − v can be colored
with only three colors. So color the vertices of G − v with three colors,
and color all vertices of G with the same colors, except for vertex v . Since
v is degree at most 2, then v is adjacent to at most two vertices and so
there is one of the three colors which is not assigned to a neighbor of v .
Assign this color to v in G and we then have a coloring of G . But this is a
CONTRADICTION, since G has chromatic number 4 and hence cannot be
colored with only 3 colors. So the assumption that G has a vertex of
degree at most 2 is false, and hence all vertices of G are degree at least 3,
as claimed.

() Introduction to Graph Theory January 22, 2021 4 / 8



Theorem 2.1.3

Theorem 2.1.3

Theorem 2.1.3. If G is critical with chromatic number χ, then the degree
of each vertex is at least χ− 1.

Proof. Let G be a critical graph with chromatic number 4. ASSUME
there is a vertex v of G where the degree of v is at most 2. Since G is
critical and G − e is a proper subgraph of G , then G − v can be colored
with only three colors. So color the vertices of G − v with three colors,
and color all vertices of G with the same colors, except for vertex v . Since
v is degree at most 2, then v is adjacent to at most two vertices and so
there is one of the three colors which is not assigned to a neighbor of v .
Assign this color to v in G and we then have a coloring of G . But this is a
CONTRADICTION, since G has chromatic number 4 and hence cannot be
colored with only 3 colors. So the assumption that G has a vertex of
degree at most 2 is false, and hence all vertices of G are degree at least 3,
as claimed.

() Introduction to Graph Theory January 22, 2021 4 / 8



Theorem 2.1.4

Theorem 2.1.4

Theorem 2.1.4. If G is a critical graph with p vertices and q edges, and
G has chromatic number χ, then the relation (χ− 1)p ≤ 2q holds.

Proof. Let G be a critical graph. By Theorem 2.1.3, the degree of each
vertex of G is at least χ− 1. Since there are p vertices, then the sum of
the degrees of the vertices of G is at least (χ− 1)p. By Theorem 1.1.1,
the sum of the degrees of the vertices of G is equal to 2q. So
(χ− 1)p ≤ 2q, as claimed.
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Theorem 2.1.6

Theorem 2.1.6

Theorem 2.1.6. A graph G is bipartite if and only if every cycle in G has
even length.

Proof. First, suppose G is bipartite so that, by definition, χ(G ) ≤ 2.
ASSUME G contains an odd cycle C . Now χ(C ) = 3 and hence
χ(G ) ≥ 3, a CONTRADICTION. So G cannot contain an odd cycle. That
is, every cycle in F has even length.

Second, suppose G has no odd cycles. Without loss of generality we may
assume G is connected (otherwise, we apply this argument to each
component of G ). Let x0 be a vertex of G . We color G as follows. For
vertex x of G , color x red if d(x0, x) is even and color x blue if d(x0, x) is
odd. We must show that no two adjacent vertices have the same color.
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Theorem 2.1.6

Theorem 2.1.6 (continued 1)

Proof (continued). Consider two adjacent vertices x and y .

Choose a shortest path from x0 to x and a shortest path from x0 to y . Let
u be the last common vertex in these shortest paths (see Figure 2.1.8).
Vertex u may be equal to x0, or u may also be x or y . Now we consider
d(u, x) and d(u, y). If u is one of x or y , then either d(u, x) = d(u, y) + 1
(when u = y) or d(u, x) = d(u, y)− 1 (when u = x). In either case, one
of the distances is odd and one is even (i.e., the distances have different
parity). If u is not one of x or y , then the length of the cycle in Figure
2.1.8 is d(u, x) + 1 + d(u, y).
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Theorem 2.1.6

Theorem 2.1.6 (continued 2)

Theorem 2.1.6. A graph G is bipartite if and only if every cycle in G has
even length.

Proof (continued). In this case G has no odd cycles so this length,
d(u, x) + 1 + d(u, y), must be even. Hence d(u, x) and d(u, y) have
different parity. Since the path from x0 to x and the path from x0 to y
were chosen to be the shortest and since u lies on both paths, then

d(x0, x) = d(x0, u) + d(u, x) and d(x0) = d(x0, u) + d(u, y).

So d(x0, x) and d(x0, y) also have different parity. Thus x and y receive
different colors. Since x and y are arbitrary adjacent vertices of G , then
the assignment of red and blue to the vertices of G is a coloring of G and
hence χ(G ) ≤ 2. That is, G is bipartite (by definition), as claimed.
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