Introduction to Graph Theory

Chapter 2. Colorings of Graphs

2.1. Vertex Colorings-Proofs of Theorems

Pearls in Graph Theorlu
 A Cominichenasive hifrodiction Nora Hartsfield Gerhard Ringel

Table of contents

(1) Theorem 2.1.2
(2) Theorem 2.1.3
(3) Theorem 2.1.4
(4) Theorem 2.1.6

Theorem 2.1.2

Theorem 2.1.2. Every graph G contains a critical subgraph H such that $\chi(H)=\chi(G)$.

Proof. If G is critical, then we can take $H=G$. If G is not critical, then there is some proper subgraph H_{1} of G with $\chi\left(H_{1}\right)=\chi(G)$ (by the definition of critical). If H_{1} is not critical, then there exists a proper subgraph H_{2} of H_{1} such that $\chi\left(H_{2}\right)=\chi\left(H_{1}\right)=\chi(G)$ (again, by the definition of critical). Continuing this process of finding a chain of proper subgraphs (each with chromatic number equal to $\chi(G))$ there must be some $k \in \mathbb{N}$ such that subgraph H_{k} is critical, since G is finite. So $H=H_{k}$ is the desired critical subgraph.

Theorem 2.1.2

Theorem 2.1.2. Every graph G contains a critical subgraph H such that $\chi(H)=\chi(G)$.

Proof. If G is critical, then we can take $H=G$. If G is not critical, then there is some proper subgraph H_{1} of G with $\chi\left(H_{1}\right)=\chi(G)$ (by the definition of critical). If H_{1} is not critical, then there exists a proper subgraph H_{2} of H_{1} such that $\chi\left(H_{2}\right)=\chi\left(H_{1}\right)=\chi(G)$ (again, by the definition of critical). Continuing this process of finding a chain of proper subgraphs (each with chromatic number equal to $\chi(G)$) there must be some $k \in \mathbb{N}$ such that subgraph H_{k} is critical, since G is finite. So $H=H_{k}$ is the desired critical subgraph.

Theorem 2.1.3

Theorem 2.1.3. If G is critical with chromatic number χ, then the degree of each vertex is at least $\chi-1$.

Proof. Let G be a critical graph with chromatic number 4. ASSUME there is a vertex v of G where the degree of v is at most 2 . Since G is critical and $G-e$ is a proper subgraph of G, then $G-v$ can be colored with only three colors. So color the vertices of $G-v$ with three colors, and color all vertices of G with the same colors, except for vertex v.

Theorem 2.1.3

Theorem 2.1.3. If G is critical with chromatic number χ, then the degree of each vertex is at least $\chi-1$.

Proof. Let G be a critical graph with chromatic number 4. ASSUME there is a vertex v of G where the degree of v is at most 2 . Since G is critical and $G-e$ is a proper subgraph of G, then $G-v$ can be colored with only three colors. So color the vertices of $G-v$ with three colors, and color all vertices of G with the same colors, except for vertex v. Since v is degree at most 2, then v is adjacent to at most two vertices and so there is one of the three colors which is not assigned to a neighbor of v. Assign this color to v in G and we then have a coloring of G. But this is a CONTRADICTION, since G has chromatic number 4 and hence cannot be colored with only 3 colors. So the assumption that G has a vertex of degree at most 2 is false, and hence all vertices of G are degree at least 3, as claimed.

Theorem 2.1.3

Theorem 2.1.3. If G is critical with chromatic number χ, then the degree of each vertex is at least $\chi-1$.

Proof. Let G be a critical graph with chromatic number 4. ASSUME there is a vertex v of G where the degree of v is at most 2 . Since G is critical and $G-e$ is a proper subgraph of G, then $G-v$ can be colored with only three colors. So color the vertices of $G-v$ with three colors, and color all vertices of G with the same colors, except for vertex v. Since v is degree at most 2 , then v is adjacent to at most two vertices and so there is one of the three colors which is not assigned to a neighbor of v. Assign this color to v in G and we then have a coloring of G. But this is a CONTRADICTION, since G has chromatic number 4 and hence cannot be colored with only 3 colors. So the assumption that G has a vertex of degree at most 2 is false, and hence all vertices of G are degree at least 3, as claimed.

Theorem 2.1.4

Theorem 2.1.4. If G is a critical graph with p vertices and q edges, and G has chromatic number χ, then the relation $(\chi-1) p \leq 2 q$ holds.

Proof. Let G be a critical graph. By Theorem 2.1.3, the degree of each vertex of G is at least $\chi-1$. Since there are p vertices, then the sum of the degrees of the vertices of G is at least $(\chi-1) p$. By Theorem 1.1.1, the sum of the degrees of the vertices of G is equal to $2 q$. So $(\chi-1) p \leq 2 q$, as claimed.

Theorem 2.1.4

Theorem 2.1.4. If G is a critical graph with p vertices and q edges, and G has chromatic number χ, then the relation $(\chi-1) p \leq 2 q$ holds.

Proof. Let G be a critical graph. By Theorem 2.1.3, the degree of each vertex of G is at least $\chi-1$. Since there are p vertices, then the sum of the degrees of the vertices of G is at least $(\chi-1) p$. By Theorem 1.1.1, the sum of the degrees of the vertices of G is equal to $2 q$. So $(\chi-1) p \leq 2 q$, as claimed.

Theorem 2.1.6

Theorem 2.1.6. A graph G is bipartite if and only if every cycle in G has even length.

Proof. First, suppose G is bipartite so that, by definition, $\chi(G) \leq 2$. ASSUME G contains an odd cycle C. Now $\chi(C)=3$ and hence $\chi(G) \geq 3$, a CONTRADICTION. So G cannot contain an odd cycle. That is, every cycle in F has even length.

Theorem 2.1.6

Theorem 2.1.6. A graph G is bipartite if and only if every cycle in G has even length.

Proof. First, suppose G is bipartite so that, by definition, $\chi(G) \leq 2$. ASSUME G contains an odd cycle C. Now $\chi(C)=3$ and hence $\chi(G) \geq 3$, a CONTRADICTION. So G cannot contain an odd cycle. That is, every cycle in F has even length.

Second, suppose G has no odd cycles. Without loss of generality we may assume G is connected (otherwise, we apply this argument to each component of G). Let x_{0} be a vertex of G. We color G as follows. For vertex x of G, color x red if $d\left(x_{0}, x\right)$ is even and color x blue if $d\left(x_{0}, x\right)$ is odd. We must show that no two adjacent vertices have the same color.

Theorem 2.1.6

Theorem 2.1.6. A graph G is bipartite if and only if every cycle in G has even length.

Proof. First, suppose G is bipartite so that, by definition, $\chi(G) \leq 2$. ASSUME G contains an odd cycle C. Now $\chi(C)=3$ and hence $\chi(G) \geq 3$, a CONTRADICTION. So G cannot contain an odd cycle. That is, every cycle in F has even length.

Second, suppose G has no odd cycles. Without loss of generality we may assume G is connected (otherwise, we apply this argument to each component of G). Let x_{0} be a vertex of G. We color G as follows. For vertex x of G, color x red if $d\left(x_{0}, x\right)$ is even and color x blue if $d\left(x_{0}, x\right)$ is odd. We must show that no two adjacent vertices have the same color.

Theorem 2.1.6 (continued 1)

Proof (continued). Consider two adjacent vertices x and y.

Choose a shortest path from x_{0} to x and a shortest path from x_{0} to y. Let u be the last common vertex in these shortest paths (see Figure 2.1.8). Vertex u may be equal to x_{0}, or u may also be x or y. Now we consider $d(u, x)$ and $d(u, y)$. If u is one of x or y, then either $d(u, x)=d(u, y)+1$ (when $u=y$) or $d(u, x)=d(u, y)-1$ (when $u=x$). In either case, one of the distances is odd and one is even (i.e., the distances have different parity). If u is not one of x or y, then the length of the cycle in Figure 2.1 .8 is $d(u, x)+1+d(u, y)$.

Theorem 2.1.6 (continued 1)

Proof (continued). Consider two adjacent vertices x and y.

Choose a shortest path from x_{0} to x and a shortest path from x_{0} to y. Let u be the last common vertex in these shortest paths (see Figure 2.1.8). Vertex u may be equal to x_{0}, or u may also be x or y. Now we consider $d(u, x)$ and $d(u, y)$. If u is one of x or y, then either $d(u, x)=d(u, y)+1$ (when $u=y$) or $d(u, x)=d(u, y)-1$ (when $u=x$). In either case, one of the distances is odd and one is even (i.e., the distances have different parity). If u is not one of x or y, then the length of the cycle in Figure 2.1.8 is $d(u, x)+1+d(u, y)$.

Theorem 2.1.6 (continued 2)

Theorem 2.1.6. A graph G is bipartite if and only if every cycle in G has even length.

Proof (continued). In this case G has no odd cycles so this length, $d(u, x)+1+d(u, y)$, must be even. Hence $d(u, x)$ and $d(u, y)$ have different parity. Since the path from x_{0} to x and the path from x_{0} to y were chosen to be the shortest and since u lies on both paths, then

$$
d\left(x_{0}, x\right)=d\left(x_{0}, u\right)+d(u, x) \text { and } d\left(x_{0}\right)=d\left(x_{0}, u\right)+d(u, y) .
$$

So $d\left(x_{0}, x\right)$ and $d\left(x_{0}, y\right)$ also have different parity. Thus x and y receive different colors. Since x and y are arbitrary adjacent vertices of G, then the assignment of red and blue to the vertices of G is a coloring of G and hence $\chi(G) \leq 2$. That is, G is bipartite (by definition), as claimed.

Theorem 2.1.6 (continued 2)

Theorem 2.1.6. A graph G is bipartite if and only if every cycle in G has even length.

Proof (continued). In this case G has no odd cycles so this length, $d(u, x)+1+d(u, y)$, must be even. Hence $d(u, x)$ and $d(u, y)$ have different parity. Since the path from x_{0} to x and the path from x_{0} to y were chosen to be the shortest and since u lies on both paths, then

$$
d\left(x_{0}, x\right)=d\left(x_{0}, u\right)+d(u, x) \text { and } d\left(x_{0}\right)=d\left(x_{0}, u\right)+d(u, y) .
$$

So $d\left(x_{0}, x\right)$ and $d\left(x_{0}, y\right)$ also have different parity. Thus x and y receive different colors. Since x and y are arbitrary adjacent vertices of G, then the assignment of red and blue to the vertices of G is a coloring of G and hence $\chi(G) \leq 2$. That is, G is bipartite (by definition), as claimed.

