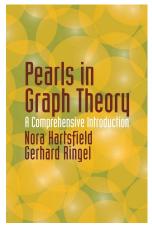
Introduction to Graph Theory

Chapter 2. Colorings of Graphs

2.2. Edge Colorings—Proofs of Theorems



Introduction to Graph Theory

November 19, 2022

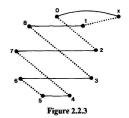
Introduction to Graph Theory

November 19, 2022 3 / 7

Theorem 2.2.3

Theorem 2.2.3. The edge chromatic number of K_{2n} is 2n-1.

Proof. Denote the vertices of K_{2n} as $0, 1, 2, \dots, 2n-2, x$. Arrange the numbered vertices as a regular (2n-1)-gon with vertex x placed outside, as in Figure 2.2.3 (where n = 5).



Let $C_1, C_2, \ldots, C_{2n-1}$ denote the 2n-1 distinct colors. We color the following edges (represented as pairs of vertices)color C_1 : $0 \times 12n - 2$, $22n-3, \ldots, nn-1$; these edges are represented with solid segments in Figure 2.2.3.

Theorem 2.2.1

Theorem 2.2.1. Let G be a graph. The number of colors required for a proper edge coloring of G is greater than or equal to the maximum degree of any vertex of G.

Proof. Let the maximum degree of a vertex in G be t. Then some vertex v of G is of degree t and so there are t edges of G incident to v. These tedges are therefore adjacent to each other and so must be of t different colors in a proper edge coloring of G. So the edge chromatic number of Gis at least t, as claimed.

Theorem 2.2.3 (continued)

Proof (continued). We determine the edges of color C_2 by leaving the outside vertex x fixed and "turning" the other ends of edges of color C_1 one unit clockwise (this produces the dotted segments in Figure 2.2.3). We continue this turning process to produce the following edges of the given color:

This gives a proper edge coloring of K_{2n} with the 2n-1 colors $C_1, C_2, \ldots, C_{2n-1}$, so the edge chromatic number is at most 2n-1. Since the maximum degree of a vertex in K_{2n} is 2n-1, then by Theorem 2.2.1 we have that the edge chromatic number of K_{2n} equals 2n-1, as claimed.

Theorem 2.2.4

Theorem 2.2.4. The edge chromatic number of K_{2n-1} is 2n-1.

Proof. Since by Theorem 2.2.3 we can properly edge color K_{2n} with

2n-1 colors, we can properly edge color the subgraph K_{2n-1} of K_{2n} with 2n-1 colors. We now show that K_{2n-1} cannot be properly edge colored using only 2n-2 colors. Recall that there are $\binom{2n-1}{2}=(n-1)(2n-1)$ edges in K_{2n-1} . If these edges are colored by only 2n-2 colors, then some color does to at least n edges (if not, then we only color (n-1)(2n-2)edges and (n-1)(2n-2) < (n-1)(2n-1)). But then two adjacent edges must have the same color; see Figure 2.2.4 for a configuration of 2n-1 vertices and n-1 edges and notice that we cannot add another edge (for a total n-1 of n edges) unless we make it adjacent to one of the other edges.

Introduction to Graph Theory

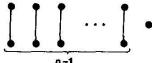


Figure 2.2.4

November 19, 2022

Theorem 2.2.4 (continued)

Theorem 2.2.4. The edge chromatic number of K_{2n-1} is 2n-1.

Proof (continued). So K_{2n-1} cannot be properly edge colored with only 2n-2 colors. So by Vizing's Theorem (Theorem 2.2.2), since K_{2n-1} is 2n-2-regular, the chromatic number of K_{2n-1} is 2n-1, as claimed. \square

> Introduction to Graph Theory November 19, 2022