Introduction to Graph Theory

Chapter 2. Colorings of Graphs

2.2. Edge Colorings-Proofs of Theorems

Pearls in Graph Theoru
 A Comprethensive Introduction Nora Hartsfield Gerhard Ringel

Table of contents

(1) Theorem 2.2.1
(2) Theorem 2.2.3
(3) Theorem 2.2.4

Theorem 2.2.1

Theorem 2.2.1. Let G be a graph. The number of colors required for a proper edge coloring of G is greater than or equal to the maximum degree of any vertex of G.

Proof. Let the maximum degree of a vertex in G be t. Then some vertex v of G is of degree t and so there are t edges of G incident to v. These t edges are therefore adjacent to each other and so must be of t different colors in a proper edge coloring of G. So the edge chromatic number of G is at least t, as claimed.

Theorem 2.2.1

Theorem 2.2.1. Let G be a graph. The number of colors required for a proper edge coloring of G is greater than or equal to the maximum degree of any vertex of G.

Proof. Let the maximum degree of a vertex in G be t. Then some vertex v of G is of degree t and so there are t edges of G incident to v. These t edges are therefore adjacent to each other and so must be of t different colors in a proper edge coloring of G. So the edge chromatic number of G is at least t, as claimed.

Theorem 2.2.3

Theorem 2.2.3. The edge chromatic number of $K_{2 n}$ is $2 n-1$.
Proof. Denote the vertices of $K_{2 n}$ as $0,1,2, \ldots, 2 n-2, x$. Arrange the numbered vertices as a regular $(2 n-1)$-gon with vertex x placed outside, as in Figure 2.2.3 (where $n=5$).

Theorem 2.2.3

Theorem 2.2.3. The edge chromatic number of $K_{2 n}$ is $2 n-1$.
Proof. Denote the vertices of $K_{2 n}$ as $0,1,2, \ldots, 2 n-2, x$. Arrange the numbered vertices as a regular $(2 n-1)$-gon with vertex x placed outside, as in Figure 2.2.3 (where $n=5$).

Figure 2.2.3
Let $C_{1}, C_{2}, \ldots, C_{2 n-1}$ denote the $2 n-1$ distinct colors. We color the following edges (represented as pairs of vertices)color C_{1} : $0 x, 12 n-2$, $22 n-3, \ldots, n n-1$; these edges are represented with solid segments in Figure 2.2.3.

Theorem 2.2.3

Theorem 2.2.3. The edge chromatic number of $K_{2 n}$ is $2 n-1$.
Proof. Denote the vertices of $K_{2 n}$ as $0,1,2, \ldots, 2 n-2, x$. Arrange the numbered vertices as a regular $(2 n-1)$-gon with vertex x placed outside, as in Figure 2.2.3 (where $n=5$).

Figure 2.2.3
Let $C_{1}, C_{2}, \ldots, C_{2 n-1}$ denote the $2 n-1$ distinct colors. We color the following edges (represented as pairs of vertices)color C_{1} : $0 x, 12 n-2$, $22 n-3, \ldots, n n-1$; these edges are represented with solid segments in Figure 2.2.3.

Theorem 2.2.3 (continued)

Proof (continued). We determine the edges of color C_{2} by leaving the outside vertex x fixed and "turning" the other ends of edges of color C_{1} one unit clockwise (this produces the dotted segments in Figure 2.2.3). We continue this turning process to produce the following edges of the given color:

$$
\begin{array}{cccccc}
C_{1} & 0 x & 12 n-2 & 22 n-3 & \cdots & n n-1 \\
C_{2} & 1 x & 20 & 32 n-2 & \cdots & n+1 n \\
C_{3} & 2 x & 31 & 40 & \cdots & n+2 n+1 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
C_{2 n-1} & 2 n-2 x & 02 n-3 & 12 n-4 & \cdots & n-1 n-2 .
\end{array}
$$

This gives a proper edge coloring of $K_{2 n}$ with the $2 n-1$ colors
$C_{1}, C_{2}, \ldots, C_{2 n-1}$, so the edge chromatic number is at most $2 n-1$. Since the maximum degree of a vertex in $K_{2 n}$ is $2 n-1$, then by Theorem 2.2.1 we have that the edge chromatic number of $K_{2 n}$ equals $2 n-1$, as

Theorem 2.2.3 (continued)

Proof (continued). We determine the edges of color C_{2} by leaving the outside vertex x fixed and "turning" the other ends of edges of color C_{1} one unit clockwise (this produces the dotted segments in Figure 2.2.3). We continue this turning process to produce the following edges of the given color:

$$
\begin{array}{cccccc}
C_{1} & 0 x & 12 n-2 & 22 n-3 & \cdots & n n-1 \\
C_{2} & 1 x & 20 & 32 n-2 & \cdots & n+1 n \\
C_{3} & 2 x & 31 & 40 & \cdots & n+2 n+1 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
C_{2 n-1} & 2 n-2 x & 02 n-3 & 12 n-4 & \cdots & n-1 n-2 .
\end{array}
$$

This gives a proper edge coloring of $K_{2 n}$ with the $2 n-1$ colors $C_{1}, C_{2}, \ldots, C_{2 n-1}$, so the edge chromatic number is at most $2 n-1$. Since the maximum degree of a vertex in $K_{2 n}$ is $2 n-1$, then by Theorem 2.2.1 we have that the edge chromatic number of $K_{2 n}$ equals $2 n-1$, as claimed.

Theorem 2.2.4

Theorem 2.2.4. The edge chromatic number of $K_{2 n-1}$ is $2 n-1$.
Proof. Since by Theorem 2.2 .3 we can properly edge color $K_{2 n}$ with $2 n-1$ colors, we can properly edge color the subgraph $K_{2 n-1}$ of $K_{2 n}$ with $2 n-1$ colors. We now show that $K_{2 n-1}$ cannot be properly edge colored using only $2 n-2$ colors. Recall that there are $\binom{2 n-1}{2}=(n-1)(2 n-1)$ edges in $K_{2 n-1}$. If these edges are colored by only $2 n-2$ colors, then some color does to at least n edges (if not, then we only color $(n-1)(2 n-2)$ edges and $(n-1)(2 n-2)<(n-1)(2 n-1))$.

Theorem 2.2.4

Theorem 2.2.4. The edge chromatic number of $K_{2 n-1}$ is $2 n-1$.
Proof. Since by Theorem 2.2 .3 we can properly edge color $K_{2 n}$ with $2 n-1$ colors, we can properly edge color the subgraph $K_{2 n-1}$ of $K_{2 n}$ with $2 n-1$ colors. We now show that $K_{2 n-1}$ cannot be properly edge colored using only $2 n-2$ colors. Recall that there are $\binom{2 n-1}{2}=(n-1)(2 n-1)$ edges in $K_{2 n-1}$. If these edges are colored by only $2 n-2$ colors, then some color does to at least n edges (if not, then we only color $(n-1)(2 n-2)$ edges and $(n-1)(2 n-2)<(n-1)(2 n-1))$. But
then two adjacent edges must have the same color; see Figure 2.2.4 for
a configuration of $2 n-1$ vertices
and $n-1$ edges and notice that we
cannot add another edge (for a total
of n edges) unless we make it adjacent
to one of the other edges.

Theorem 2.2.4

Theorem 2.2.4. The edge chromatic number of $K_{2 n-1}$ is $2 n-1$.
Proof. Since by Theorem 2.2 .3 we can properly edge color $K_{2 n}$ with $2 n-1$ colors, we can properly edge color the subgraph $K_{2 n-1}$ of $K_{2 n}$ with $2 n-1$ colors. We now show that $K_{2 n-1}$ cannot be properly edge colored using only $2 n-2$ colors. Recall that there are $\binom{2 n-1}{2}=(n-1)(2 n-1)$ edges in $K_{2 n-1}$. If these edges are colored by only $2 n-2$ colors, then some color does to at least n edges (if not, then we only color $(n-1)(2 n-2)$ edges and $(n-1)(2 n-2)<(n-1)(2 n-1))$. But then two adjacent edges must have the same color; see Figure 2.2.4 for a configuration of $2 n-1$ vertices and $n-1$ edges and notice that we cannot add another edge (for a total of n edges) unless we make it adjacent

Figure 2.2.4 to one of the other edges.

Theorem 2.2.4

Theorem 2.2.4. The edge chromatic number of $K_{2 n-1}$ is $2 n-1$.
Proof. Since by Theorem 2.2 .3 we can properly edge color $K_{2 n}$ with $2 n-1$ colors, we can properly edge color the subgraph $K_{2 n-1}$ of $K_{2 n}$ with $2 n-1$ colors. We now show that $K_{2 n-1}$ cannot be properly edge colored using only $2 n-2$ colors. Recall that there are $\binom{2 n-1}{2}=(n-1)(2 n-1)$ edges in $K_{2 n-1}$. If these edges are colored by only $2 n-2$ colors, then some color does to at least n edges (if not, then we only color $(n-1)(2 n-2)$ edges and $(n-1)(2 n-2)<(n-1)(2 n-1))$. But then two adjacent edges must have the same color; see Figure 2.2.4 for a configuration of $2 n-1$ vertices and $n-1$ edges and notice that we cannot add another edge (for a total of n edges) unless we make it adjacent

Figure 2.2.4 to one of the other edges.

Theorem 2.2.4 (continued)

Theorem 2.2.4. The edge chromatic number of $K_{2 n-1}$ is $2 n-1$.

Proof (continued). So $K_{2 n-1}$ cannot be properly edge colored with only $2 n-2$ colors. So by Vizing's Theorem (Theorem 2.2.2), since $K_{2 n-1}$ is $2 n-2$-regular, the chromatic number of $K_{2 n-1}$ is $2 n-1$, as claimed.

