Introduction to Graph Theory

Chapter 2. Colorings of Graphs

2.3. Decompositions and Hamilton Cycles—Proofs of Theorems

Introduction to Graph Theory

November 20, 2022

Theorem 2.3.1

Theorem 2.3.1. (Lucas' Theorem).

The complete graph K_{2n+1} has a decomposition into n Hamilton cycles.

Proof. Consider the Hamilton cycle given in the figure. We rotate this cycle clockwise by mapping vertex i to vertex $i+1 \pmod{2n}$ and by fixing vertex x. Performing this rotation *n* times results in a collection of Hamilton cycles

which yield the desired decomposition:

$$(C_1)$$
 0 $2n-1$ 1 $2n-2$ 2 \cdots $n+1$ $n-1$ n

: : :
$$(C_n)$$
 $2n-1$ $2n-2$ 0 $2n-3$ 1 \cdots n $n-2$ $n-1$ x .

Introduction to Graph Theory

Theorem 2.3.2

Theorem 2.3.2. K_{2n} has a decomposition into n-1 Hamilton cycles and a 1-factor.

Proof. In the proof of Theorem 2.2.3, we found the following color classes for colors $C_1, C_2, \ldots, C_{2n-1}$ in K_{2n} , where the vertices of K_{2n} are x, 0, 1, 2, ..., 2n - 2:

Combining the edges of color classes C_i and C_{i+1} , for $i=1,3,5,\ldots,2n-3$, we get the edges of n-1 Hamilton cycles in K_{2n} . The final color class C_{2n-1} then gives a 1-factor of K_{2n} , as claimed.

Theorem 2.3.3

Theorem 2.3.3. K_{2n} has a decomposition into n Hamilton paths.

Proof. Let the vertices of K_{2n} be $0, 1, 2, \dots, 2n-1$. Consider the graph K_{2n+1} with vertices $x, 0, 1, 2, \dots, 2n-1$. A specific decomposition of K_{2n+1} into n Hamilton cycles is given in the proof of Theorem 2.3.1. By removing vertex x from K_{2n+1} and from each of the n Hamilton cycles, we get n Hamilton paths which give a decomposition of K_{2n} , as claimed.

Introduction to Graph Theory November 20, 2022 November 20, 2022 5 / 7 Introduction to Graph Theory

Theorem 2.3.4

Theorem 2.3.4. The complete graph K_{2n} has a decomposition into 2n-1 paths consisting of one path of each length k for $k=1,2,3,\ldots,2n-1$.

Proof. By Theorem 2.3.3, K_{2n} has a decomposition into n Hamilton paths. Each such path is of length 2n-1 (there is a total of n(2n-1)=2n(2n-1)/2 edges in the paths). Now a path of length 2n-1 can be decomposed into a path of length i and a path of length (2n-1)-i where $0 \le i \le n-1$. So for each i with $0 \le i \le n-1$ (a total of n values of i), decompose one of the Hamilton path into a path of length i and a path of length i and a path of length i and a path of length i. This yields paths of length i for i0 and i1 and i2 a claimed.

Theorem 2.3.5

Theorem 2.3.5. A snark has no Hamilton cycle.

Proof. Let G be a snark. Notice that since G is 3-regular and the sum of the degrees of the vertices of G is even (by Theorem 1.1.1), then the number of vertices must be even. ASSUME that G has a Hamilton cycle. Color the edges of the cycle with colors 1 and 2 alternating. Since there are an even number of vertices, this is a proper edge coloring of the cycle. Color the remaining edges in G with color 3. At each vertex there are two edges of the Hamilton cycle, one of which is colored 1 and one of which is colored 2, and a third edge that is colored 3. Hence we have a proper edge coloring of G with three colors, CONTRADICTING the fact that G is a snark (since a snark has chromatic number four). So the assumption that G has a Hamilton cycle is false. That is, a snark does not contain a Hamilton cycle, as claimed.