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Theorem 2.3.1

Theorem 2.3.1. (Lucas’ Theorem).
The complete graph Ku,4+1 has a decomposition into n Hamilton cycles.
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Theorem 2.3.1

Theorem 2.3.1. (Lucas’ Theorem).
The complete graph Ku,4+1 has a decomposition into n Hamilton cycles.

Proof. Consider the Hamilton

cycle given in the figure. We -2
rotate this cycle clockwise by
mapping vertex i to vertex o) B}

i+ 1 (mod 2n) and by fixing
vertex x. Performing this
rotation n times results in

a collection of Hamilton cycles 7
which yield the desired decomposition:
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Theorem 2.3.1

Theorem 2.3.1. (Lucas’ Theorem).
The complete graph Ku,4+1 has a decomposition into n Hamilton cycles.

0

Proof. Consider the Hamilton

cycle given in the figure. We -2
rotate this cycle clockwise by

mapping vertex i to vertex oy =
i+ 1 (mod 2n) and by fixing
vertex x. Performing this
rotation n times results in

a collection of Hamilton cycles 7
which yield the desired decomposition:

(G) 0 2n—-1 1 2n—-2 2 -+ n+1 n—-1 n X
(&) 1 2n 2 2n—-1 3 -+ n+42 n n+1l x
(G 2n—1 2n—-2 0 2n-3 1 --. n n—2 n—1 x
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Theorem 2.3.2

Theorem 2.3.2. Kj, has a decomposition into n — 1 Hamilton cycles and
a 1-factor.
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Theorem 2.3.2

Theorem 2.3.2. Kj, has a decomposition into n — 1 Hamilton cycles and
a 1-factor.

Proof. In the proof of Theorem 2.2.3, we found the following color classes
for colors (1, Gy, ..., Cop_1 in Kyp,, where the vertices of Kb, are
x,0,1,2,...,2n—2:

G 0x 12n—-2 22n-3 --. nn—1
G 1x 20 32n—2 - n+1ln
G 2x 31 40 -+ n+2n+1
GCpo1: 2n—2x 02n—3 12n—4 --- n—1n-2.

Combining the edges of color classes C; and G4, for
i=1,3,5,...,2n — 3, we get the edges of n — 1 Hamilton cycles in Kz,.
The final color class (5,1 then gives a 1-factor of K5, as claimed. ]
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Theorem 2.3.3

Theorem 2.3.3. K5, has a decomposition into n Hamilton paths.
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Theorem 2.3.3

Theorem 2.3.3

Theorem 2.3.3. K5, has a decomposition into n Hamilton paths.

Proof. Let the vertices of K, be 0,1,2,...,2n — 1. Consider the graph
Kopt1 with vertices x,0,1,2,...,2n — 1. A specific decomposition of
Kop41 into n Hamilton cycles is given in the proof of Theorem 2.3.1. By
removing vertex x from Kp,11 and from each of the n Hamilton cycles, we
get n Hamilton paths which give a decomposition of K>,, as claimed. [
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Theorem 2.3.4

Theorem 2.3.4. The complete graph K>, has a decomposition into 2n— 1
paths consisting of one path of each length k for k =1,2,3,...,2n— 1.
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Theorem 2.3.4

Theorem 2.3.4. The complete graph K>, has a decomposition into 2n— 1
paths consisting of one path of each length k for k =1,2,3,...,2n— 1.

Proof. By Theorem 2.3.3, K5, has a decomposition into n Hamilton
paths. Each such path is of length 2n — 1 (there is a total of

n(2n — 1) = 2n(2n — 1)/2 edges in the paths). Now a path of length

2n — 1 can be decomposed into a path of length 7 and a path of length
(2n—1) —iwhere 0 < i< n—1. So for each j with0<i<n-—1(a
total of n values of i), decompose one of the Hamilton path into a path of
length i and a path of length (2n — 1) — . This yields paths of length k
for k=1,2,3,...,2n — 1, as claimed. []
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Theorem 2.3.5

Theorem 2.3.5. A snark has no Hamilton cycle.
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Theorem 2.3.5

Theorem 2.3.5. A snark has no Hamilton cycle.

Proof. Let G be a snark. Notice that since G is 3-regular and the sum of
the degrees of the vertices of G is even (by Theorem 1.1.1), then the
number of vertices must be even. ASSUME that G has a Hamilton cycle.
Color the edges of the cycle with colors 1 and 2 alternating. Since there
are an even number of vertices, this is a proper edge coloring of the cycle.
Color the remaining edges in G with color 3.
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Theorem 2.3.5

Theorem 2.3.5. A snark has no Hamilton cycle.

Proof. Let G be a snark. Notice that since G is 3-regular and the sum of
the degrees of the vertices of G is even (by Theorem 1.1.1), then the
number of vertices must be even. ASSUME that G has a Hamilton cycle.
Color the edges of the cycle with colors 1 and 2 alternating. Since there
are an even number of vertices, this is a proper edge coloring of the cycle.
Color the remaining edges in G with color 3. At each vertex there are two
edges of the Hamilton cycle, one of which is colored 1 and one of which is
colored 2, and a third edge that is colored 3. Hence we have a proper edge
coloring of G with three colors, CONTRADICTING the fact that G is a
snark (since a snark has chromatic number four). So the assumption that
G has a Hamilton cycle is false. That is, a snark does not contain a
Hamilton cycle, as claimed. O
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