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Theorem 2.3.1. Lucas’ Theorem

Theorem 2.3.1

Theorem 2.3.1. (Lucas’ Theorem).
The complete graph K2n+1 has a decomposition into n Hamilton cycles.

Proof. Consider the Hamilton
cycle given in the figure. We
rotate this cycle clockwise by
mapping vertex i to vertex
i + 1 (mod 2n) and by fixing
vertex x . Performing this
rotation n times results in
a collection of Hamilton cycles
which yield the desired decomposition:

(C1) 0 2n − 1 1 2n − 2 2 · · · n + 1 n − 1 n x
(C2) 1 2n 2 2n − 1 3 · · · n + 2 n n + 1 x

...
...

...
(Cn) 2n − 1 2n − 2 0 2n − 3 1 · · · n n − 2 n − 1 x .
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Theorem 2.3.2

Theorem 2.3.2

Theorem 2.3.2. K2n has a decomposition into n − 1 Hamilton cycles and
a 1-factor.

Proof. In the proof of Theorem 2.2.3, we found the following color classes
for colors C1,C2, . . . ,C2n−1 in K2n, where the vertices of K2n are
x , 0, 1, 2, . . . , 2n − 2:

C1 : 0 x 1 2n − 2 2 2n − 3 · · · n n − 1
C2 : 1 x 2 0 3 2n − 2 · · · n + 1 n
C3 : 2 x 3 1 4 0 · · · n + 2 n + 1

...
...

...
...

...
...

C2n−1 : 2n − 2 x 0 2n − 3 1 2n − 4 · · · n − 1 n − 2.

Combining the edges of color classes Ci and Ci+1, for
i = 1, 3, 5, . . . , 2n − 3, we get the edges of n − 1 Hamilton cycles in K2n.
The final color class C2n−1 then gives a 1-factor of K2n, as claimed.
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Theorem 2.3.3

Theorem 2.3.3

Theorem 2.3.3. K2n has a decomposition into n Hamilton paths.

Proof. Let the vertices of K2n be 0, 1, 2, . . . , 2n − 1. Consider the graph
K2n+1 with vertices x , 0, 1, 2, . . . , 2n − 1. A specific decomposition of
K2n+1 into n Hamilton cycles is given in the proof of Theorem 2.3.1. By
removing vertex x from K2n+1 and from each of the n Hamilton cycles, we
get n Hamilton paths which give a decomposition of K2n, as claimed.
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Theorem 2.3.4

Theorem 2.3.4

Theorem 2.3.4. The complete graph K2n has a decomposition into 2n− 1
paths consisting of one path of each length k for k = 1, 2, 3, . . . , 2n − 1.

Proof. By Theorem 2.3.3, K2n has a decomposition into n Hamilton
paths. Each such path is of length 2n − 1 (there is a total of
n(2n − 1) = 2n(2n − 1)/2 edges in the paths). Now a path of length
2n − 1 can be decomposed into a path of length i and a path of length
(2n − 1)− i where 0 ≤ i ≤ n − 1. So for each i with 0 ≤ i ≤ n − 1 (a
total of n values of i), decompose one of the Hamilton path into a path of
length i and a path of length (2n − 1)− i . This yields paths of length k
for k = 1, 2, 3, . . . , 2n − 1, as claimed.
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Theorem 2.3.5

Theorem 2.3.5

Theorem 2.3.5. A snark has no Hamilton cycle.

Proof. Let G be a snark. Notice that since G is 3-regular and the sum of
the degrees of the vertices of G is even (by Theorem 1.1.1), then the
number of vertices must be even. ASSUME that G has a Hamilton cycle.
Color the edges of the cycle with colors 1 and 2 alternating. Since there
are an even number of vertices, this is a proper edge coloring of the cycle.
Color the remaining edges in G with color 3.

At each vertex there are two
edges of the Hamilton cycle, one of which is colored 1 and one of which is
colored 2, and a third edge that is colored 3. Hence we have a proper edge
coloring of G with three colors, CONTRADICTING the fact that G is a
snark (since a snark has chromatic number four). So the assumption that
G has a Hamilton cycle is false. That is, a snark does not contain a
Hamilton cycle, as claimed.
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