Introduction to Graph Theory

Chapter 2. Colorings of Graphs 2.3. Decompositions and Hamilton Cycles—Proofs of Theorems

- 1 Theorem 2.3.1. Lucas' Theorem
- 2 Theorem 2.3.2
- 3 Theorem 2.3.3
- Theorem 2.3.4
- 5 Theorem 2.3.5

Theorem 2.3.1. (Lucas' Theorem). The complete graph K_{2n+1} has a decomposition into *n* Hamilton cycles. **Proof.** Consider the Hamilton cycle given in the figure. We rotate this cycle clockwise by mapping vertex *i* to vertex $i + 1 \pmod{2n}$ and by fixing vertex x. Performing this rotation *n* times results in a collection of Hamilton cycles which yield the desired decomposition:

Theorem 2.3.1. (Lucas' Theorem).

The complete graph K_{2n+1} has a decomposition into *n* Hamilton cycles.

Proof. Consider the Hamilton cycle given in the figure. We rotate this cycle clockwise by mapping vertex i to vertex $i + 1 \pmod{2n}$ and by fixing vertex x. Performing this rotation *n* times results in a collection of Hamilton cycles which yield the desired decomposition:

Theorem 2.3.1. (Lucas' Theorem).

The complete graph K_{2n+1} has a decomposition into *n* Hamilton cycles.

Proof. Consider the Hamilton cycle given in the figure. We rotate this cycle clockwise by mapping vertex *i* to vertex $i + 1 \pmod{2n}$ and by fixing vertex *x*. Performing this rotation *n* times results in a collection of Hamilton cycles which yield the desired decomposition:

Theorem 2.3.2. K_{2n} has a decomposition into n-1 Hamilton cycles and a 1-factor.

Proof. In the proof of Theorem 2.2.3, we found the following color classes for colors $C_1, C_2, \ldots, C_{2n-1}$ in K_{2n} , where the vertices of K_{2n} are $x, 0, 1, 2, \ldots, 2n - 2$:

C_1 :	0 x	12n - 2	22 <i>n</i> – 3		n n - 1
C_2 :	1x	20	32 <i>n</i> – 2		n+1 n
C_{3} :	2 x	31	40		n + 2n + 1
-	-	-		:	
C_{2n-1} :	2 <i>n</i> – 2 <i>x</i>	02 <i>n</i> – 3	12 <i>n</i> – 4		n - 1 n - 2.

Combining the edges of color classes C_i and C_{i+1} , for $i = 1, 3, 5, \ldots, 2n - 3$, we get the edges of n - 1 Hamilton cycles in K_{2n} . The final color class C_{2n-1} then gives a 1-factor of K_{2n} , as claimed.

Theorem 2.3.2. K_{2n} has a decomposition into n - 1 Hamilton cycles and a 1-factor.

Proof. In the proof of Theorem 2.2.3, we found the following color classes for colors $C_1, C_2, \ldots, C_{2n-1}$ in K_{2n} , where the vertices of K_{2n} are $x, 0, 1, 2, \ldots, 2n - 2$:

C_1 :	0 x	12n - 2	22 <i>n</i> – 3	•••	n n - 1
<i>C</i> ₂ :	1x	20	32n - 2	• • •	n+1 n
<i>C</i> ₃ :	2 x	31	40	•••	n + 2 n + 1
÷	:	:	÷	÷	:
C_{2n-1} :	2n - 2x	02 <i>n</i> – 3	12n - 4	• • •	n - 1 n - 2.

Combining the edges of color classes C_i and C_{i+1} , for $i = 1, 3, 5, \ldots, 2n - 3$, we get the edges of n - 1 Hamilton cycles in K_{2n} . The final color class C_{2n-1} then gives a 1-factor of K_{2n} , as claimed.

Theorem 2.3.3. K_{2n} has a decomposition into *n* Hamilton paths.

Proof. Let the vertices of K_{2n} be 0, 1, 2, ..., 2n - 1. Consider the graph K_{2n+1} with vertices x, 0, 1, 2, ..., 2n - 1. A specific decomposition of K_{2n+1} into *n* Hamilton cycles is given in the proof of Theorem 2.3.1. By removing vertex *x* from K_{2n+1} and from each of the *n* Hamilton cycles, we get *n* Hamilton paths which give a decomposition of K_{2n} , as claimed.

Theorem 2.3.3. K_{2n} has a decomposition into *n* Hamilton paths.

Proof. Let the vertices of K_{2n} be 0, 1, 2, ..., 2n - 1. Consider the graph K_{2n+1} with vertices x, 0, 1, 2, ..., 2n - 1. A specific decomposition of K_{2n+1} into *n* Hamilton cycles is given in the proof of Theorem 2.3.1. By removing vertex *x* from K_{2n+1} and from each of the *n* Hamilton cycles, we get *n* Hamilton paths which give a decomposition of K_{2n} , as claimed.

Theorem 2.3.4. The complete graph K_{2n} has a decomposition into 2n-1 paths consisting of one path of each length k for k = 1, 2, 3, ..., 2n-1.

Proof. By Theorem 2.3.3, K_{2n} has a decomposition into n Hamilton paths. Each such path is of length 2n - 1 (there is a total of n(2n-1) = 2n(2n-1)/2 edges in the paths). Now a path of length 2n - 1 can be decomposed into a path of length i and a path of length (2n-1) - i where $0 \le i \le n-1$. So for each i with $0 \le i \le n-1$ (a total of n values of i), decompose one of the Hamilton path into a path of length k for k = 1, 2, 3, ..., 2n - 1, as claimed.

Theorem 2.3.4. The complete graph K_{2n} has a decomposition into 2n-1 paths consisting of one path of each length k for k = 1, 2, 3, ..., 2n-1.

Proof. By Theorem 2.3.3, K_{2n} has a decomposition into n Hamilton paths. Each such path is of length 2n - 1 (there is a total of n(2n-1) = 2n(2n-1)/2 edges in the paths). Now a path of length 2n - 1 can be decomposed into a path of length i and a path of length (2n-1) - i where $0 \le i \le n-1$. So for each i with $0 \le i \le n-1$ (a total of n values of i), decompose one of the Hamilton path into a path of length k for k = 1, 2, 3, ..., 2n - 1, as claimed.

Theorem 2.3.5. A snark has no Hamilton cycle.

Proof. Let *G* be a snark. Notice that since *G* is 3-regular and the sum of the degrees of the vertices of *G* is even (by Theorem 1.1.1), then the number of vertices must be even. ASSUME that *G* has a Hamilton cycle. Color the edges of the cycle with colors 1 and 2 alternating. Since there are an even number of vertices, this is a proper edge coloring of the cycle. Color the remaining edges in *G* with color 3.

Theorem 2.3.5. A snark has no Hamilton cycle.

Proof. Let G be a snark. Notice that since G is 3-regular and the sum of the degrees of the vertices of G is even (by Theorem 1.1.1), then the number of vertices must be even. ASSUME that G has a Hamilton cycle. Color the edges of the cycle with colors 1 and 2 alternating. Since there are an even number of vertices, this is a proper edge coloring of the cycle. Color the remaining edges in G with color 3. At each vertex there are two edges of the Hamilton cycle, one of which is colored 1 and one of which is colored 2, and a third edge that is colored 3. Hence we have a proper edge coloring of G with three colors, CONTRADICTING the fact that G is a snark (since a snark has chromatic number four). So the assumption that G has a Hamilton cycle is false. That is, a snark does not contain a Hamilton cycle, as claimed.

Theorem 2.3.5. A snark has no Hamilton cycle.

Proof. Let G be a snark. Notice that since G is 3-regular and the sum of the degrees of the vertices of G is even (by Theorem 1.1.1), then the number of vertices must be even. ASSUME that G has a Hamilton cycle. Color the edges of the cycle with colors 1 and 2 alternating. Since there are an even number of vertices, this is a proper edge coloring of the cycle. Color the remaining edges in G with color 3. At each vertex there are two edges of the Hamilton cycle, one of which is colored 1 and one of which is colored 2, and a third edge that is colored 3. Hence we have a proper edge coloring of G with three colors, CONTRADICTING the fact that G is a snark (since a snark has chromatic number four). So the assumption that G has a Hamilton cycle is false. That is, a snark does not contain a Hamilton cycle, as claimed.