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Chapter 3. Circuits and Cycles
3.1. Eulerian Circuits—Proofs of Theorems
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Theorem 3.1.1. Euler’s Theorem

Theorem 3.1.1

Theorem 3.1.1. Euler’s Theorem.
If a pseudograph G has an Eulerian circuit, then G is connected and the
degree of every vertex is even.

Proof. Let A1e1A2e2A3 · · ·An−1en−1An be an Eulerian circuit in G . So
there is a walk (and hence a path) between any two vertices of G and G is
connected, as claimed. Then the vertices A2,A3, . . . ,An−1 are ends of
edges in the Eulerian circuit two at a time. Suppose vertex Ai , where
2 ≤ i ≤ n− 1, occurs h times in the Eulerian circuit. Since the edges of an
Eulerian circuit are distinct, then such vertex Ai is of even degree 2h.

Finally, vertex A1 = An may equal some vertex Ai where 2 ≤ i ≤ n − 1.
Let h − 1 be the number of times that A1 equals such Ai . As just argued,
this gives 2(h − 1) edges incident to A1. But A1 also has edges e1 and
en−1 incident to it, so that vertex A1 is also even degree 2h. That is, the
degree of every vertex of G is even, as claimed.
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Lemma 3.1.3

Lemma 3.1.3

Lemma 3.1.3. If every vertex in a pseudograph G has positive even
degree, then any given vertex of G lies on some circuit of G .

Proof. Recall that a trail and a circuit can have repeated vertices, but not
repeated edges. Let A be a vertex in G . If there is a loop with A as its
ends then this gives a circuit of length 1. Otherwise, we can create a trail
Ae1A2 from A to a vertex A2 adjacent to A. Similarly, we can extend the
trail to Ae1A2e2A3 (since A2 is of even degree) where A3 is a neighbor of
A2. Inductively, we can extend the trail to Ae1A2e3A3 · · ·Ak−1ek−1Ak

based on the even degree of each vertex.

Unless Ak = A, then vertex Ak

has 2h + 1 edges of the trail incident to it (where h is the number of times
vertex Ak appears in the trail before it appears as the kth vertex). Since
Ak is of even degree, then there is an edge of G incident to Ak which does
not appear in the trail, and the trail can be extended. Since G is finite,
then the trail must return to vertex A at some stage, giving a circuit
containing vertex A, as claimed.
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Theorem 3.1.2. Hierholzer’s Theorem

Theorem 3.1.2

Theorem 3.1.2. Hierholzer’s Theorem.
If a pseudograph G is connected and the degree of every vertex of G is
even, then G has an Eulerian circuit.

Proof. We give a proof by contradiction (as opposed to a constructive
proof). Let G be a connected pseudograph such that the degree of every
vertex of G is even. Let C be a longest circuit in G . If C contains every
edge of G , then C is an Eulerian circuit, and the claim holds. ASSUME C
does not contain every edge of G .

Let H be the pseudograph that results
by removing all edges of C from G . Since all vertices of G are of even
degree by hypothesis, and all vertices of a circuit of of even degree in the
circuit, then all vertices of H must be of even degree. Since G is
connected, then H and C have a vertex A in common because (or else
there would be no edges with one end in V (H) and one end in V (C ), so
that G does not contain a path between a vertex of V (H) and a vertex of
V (C ), contradicting the hypothesis of connectivity of G ).
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Theorem 3.1.2. Hierholzer’s Theorem

Theorem 3.1.2 (continued 1)

Proof (continued). By Lemma 3.1.3, vertex A lies on a circuit C1 in the
component of H that contains A. Then A is a vertex on both circuit C and
circuit C1. Say C is A1e1A2e2A3 · · ·Ak−1ek−1AekAk+1 · · ·An−1enAn where
An = A1, and C1 is A′

1e
′
1A

′
2e

′
2A

′
3 · · ·A′

k−1e
′
k−1Ae ′kA′

k+1 · · ·A′
n−1e

′
nA

′
n where

A′
n = A′

1. Then we can extend circuit C at A by inserting C1 to get circuit

C ′ = A1e1A2e2A3 · · ·Ak−1ek−1Ae ′kA′
k+1 · · ·A′

n−1e
′
nA

′
ne

′
1A

′
2e

′
2A

′
3

· · ·A′
k−1e

′
k−1AekAk+1 · · ·An−1enAn.

But then C ′ is a circuit in G which is longer than circuit C , a
CONTRADICTION to the fact that C was chosen to be the longest circuit
in G . So the assumption that C does not contain all edges of G is false,
and we have that C is an Eulerian circuit in G , as claimed.

Note. Hartsfield and Ringel illustrate Hierholzer’s construction of C ′ as
given on the next slide.
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Theorem 3.1.2. Hierholzer’s Theorem

Theorem 3.1.2 (continued 2)

Theorem 3.1.2. Hierholzer’s Theorem.
If a pseudograph G is connected and the degree of every vertex of G is
even, then G has an Eulerian circuit.

Proof (continued).
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Theorem 3.1.4

Theorem 3.1.4

Theorem 3.1.4. If a pseudograph G is regular of degree 4, then G has a
decomposition into two 2-factors.

Proof. Let G be a pseudograph that is regular of degree 4. Without loss
of generality, we may assume that G is connected, otherwise we could
consider each connected component separately. Since every vertex of G
has even degree, then G has an Eulerian circuit by Theorem 3.1.2
(Hierholzer’s Theorem). With q as the number of edges in G , the length
of the Eulerian circuit is q. With p as the number of vertices, the
hypothesis regular of degree 4 implies that there are q = 4p/2 = 2p edges
in G , so that the Eulerian circuit contains an even number of edges.

Color the edges of the circuit, alternating red and blue. Since the Eulerian
circuit must contain each vertex twice (because each vertex is degree 4).
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Theorem 3.1.4

Theorem 3.1.4 (continued)

Theorem 3.1.4. If a pseudograph G is regular of degree 4, then G has a
decomposition into two 2-factors.

Proof (continued). The circuit must contain an even number of edges
between consecutive appearances of a given vertex in the circuit, so that if
a given vertex in the circuit is followed by an edge of color red/blue then
when the circuit next returns to the vertex it must be preceded by an edge
of color blue red, respectively. So every vertex is incident with two red
edges and two blue edges in the Eulerian circuit. The red edges form a
2-factor of G and the blue edges form a second 2-factor of G , as
claimed.
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Theorem 3.1.5. Veblen’s Theorem

Theorem 3.1.5

Theorem 3.1.5. Veblen’s Theorem.
A pseudograph G has a decomposition into cycles if and only if every
vertex of G has even degree.

Proof. Suppose G has a decomposition into cycles. Consider an arbitrary
vertex A of G . If A belongs to h of these cycles, then A is of even degree
2h. Therefore, all vertices of G are of even degree.

Now suppose that every vertex of G has even degree. We give an
inductive proof on the number of edges in G . For the base case, if G has
all even degree vertices and only one or two edges, then the result
“clearly” holds. For the induction hypothesis, suppose that the theorem is
true for all pseudographs with fewer than n edges and all vertices of even
degree. Let G be a pseudograph with n edges and all vertices of even
degree. By Lemma 3.1.3, G contains a circuit.
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Theorem 3.1.5. Veblen’s Theorem

Theorem 3.1.5 (continued)

Theorem 3.1.5. Veblen’s Theorem.
A pseudograph G has a decomposition into cycles if and only if every
vertex of G has even degree.

Proof (continued). Let C be the shortest circuit in G . Then C must be
a cycle, or we could shorten it be deleting all edges repeated between
repeated vertices (details are to be given in Exercise 3.1.A). Now consider
the pseudograph that results by removing all edges of C from G , which we
denote as G − C . Since each vertex of G is of even degree by hypothesis
and each vertex of C (a cycle) is of degree two, then each vertex of G − C
is of even degree and G − C has fewer than n edges. So by the induction
hypothesis, G − C has a decomposition into cycles. This collection of
cycles which form a decomposition of G − C , along with cycle C , yields a
decomposition of G into cycles, as claimed.
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Theorem 3.1.6

Theorem 3.1.6

Theorem 3.1.6. A pseudograph G has an Eulerian trail if and only if G is
connected and has precisely two vertices of odd degree.

Proof. Suppose G has an Eulerian trail T . Then there is a trail between
any two vertices of G , and so there is a path between any to vertices of G ;
that is, G is connected (by definition or “connected”). Let the trail begin
at vertex A and end at vertex B. Add an edge e between vertices A and
B, creating the pseudograph denoted G + e. Then T + e is an Eulerian
circuit in the pseudograph G + e and, by Theorem 3.1.1, every vertex of
G + e must have even degree.

Since all vertices of G and G + e have the
same degrees, except for A and B, all vertices of G must be of even
degree, except for A and B. The degrees of A and B are one larger in
G + e than they are in G , so the degrees of A and B must be odd in G .
That is, G has exactly two vertices of odd degree, namely A and B.
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Theorem 3.1.6

Theorem 3.1.6 (continued)

Theorem 3.1.6. A pseudograph G has an Eulerian trail if and only if G is
connected and has precisely two vertices of odd degree.

Proof (continued). Now suppose that G is connected and has exactly to
vertices A and B of odd degree. Again, add an edge e between A and B,
creating pseudograph G + e. Then G + e is connected, and every vertex
has even degree. By Theorem 3.1.2 (Hierholzer’s Theorem) G + e has an
Eulerian circuit C . Then C − e is an Eulerian trail in G which starts and
ends at the vertices of odd degree, as claimed.
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Theorem 3.1.7. Listing’s Theorem

Theorem 3.1.7

Theorem 3.1.7. Listing’s Theorem.
If G is a connected pseudograph with precisely 2h vertices of odd degree,
h 6= 0, then there exists h trails in G such that each edge of G is exactly
one of these trails. Furthermore, fewer than h trails with this property
cannot be found.

Proof. For the 2h vertices of odd degree in G , add h new edges in such a
way that a pseudograph H is obtained that has only vertices of even
degree; that is, edges are added to distinct pairs of degree one vertices.
Then H is an Eulerian circuit by Theorem 3.1.2 (Hierholzers Theorem).
Next, remove the h added edges from the Eulerian circuit. Since no two of
these edges is incident to the same vertex of G , then when these edges are
removed from the Eulerian circuit it broken into h trails. Each edge of G is
in exactly one of the trails, as claimed.

Finally in a collection of trails in G
that contain every edge of G , each of the 2h vertices of G of odd degree
must be the end of a trail. Therefore, such a collection must contain at
least h trials, as claimed.
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in exactly one of the trails, as claimed. Finally in a collection of trails in G
that contain every edge of G , each of the 2h vertices of G of odd degree
must be the end of a trail. Therefore, such a collection must contain at
least h trials, as claimed.
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