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Chapter 3. Circuits and Cycles
3.2. The Oberwolfach Problem—Proofs of Theorems
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Theorem 3.2.1

Theorem 3.2.1

Theorem 3.2.1. A regular graph of even degree has no bridge.

Proof. Let graph G be regular of degree 2h. ASSUME that b is a bridge
of G . Then bridge B determines two banks in G − b, and each bank has
exactly one vertex of odd degree 2h − 1 (namely the ends of bridge b).
But the number of vertices of a graph of odd degree is even (by Exercise
1.1.5), so this is a CONTRADICTION. So the assumption that regular
even degree graph G has a bridge is false, and the claim holds.
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Theorem 3.2.2

Theorem 3.2.2

Theorem 3.2.2. A cubic graph that contains a bridge is not
decomposable into three 1-factors.

Proof. Let G be a cubic graph that contains a bridge b. ASSUME that G
is decomposable into three 1-factors. Then b is one of the 1-factors; delete
the edges of this 1-factor from G . Each of the remaining 1-factors then
induces a 1-factor of each bank of the bridge.

Now the number of vertices
of a graph of odd degree is even (again, by Exercise 1.1.5), so there must
be an odd number of vertices in each bank (the end of bridge b is of even
degree in each bank and the remaining vertices in each bank are of degree
three). However, a graph with an odd number of vertices (in this case,
each bank of the bridge) cannot admit a 1-factor, a CONTRADICTION.
So the assumption that G is decomposable inte three 1-factors is false, as
claimed.
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Theorem 3.2.4

Theorem 3.2.4

Theorem 3.2.4. Every cubic bridgeless graph is decomposable into paths
of length three.

Proof. Let G be a cubic bridgeless graph. By Petersen’s Theorem
(Theorem 3.2.3), G has a decomposition into a 1-factor and a 2-factor.
Color the edges of the 1-factor blue and the edges of the 2-factor red.
Then every vertex is incident with one blue edge and two red edges.
Number the blue edges 1, 2, . . . , ` in any order. By Theorem 3.1.5, a
2-factor is a collection of (red) cycles and, since G is cubic, the cycles are
pairwise edge disjoint. Imagine traveling around a red cycle (this gives an
orientation to the cycle). We then number the red edges of the cycle by
the same number as the blue edge incident with the beginning of that red
edge. This is illustrated in Figure 3.2.6 in the next slide.

More formally, let
a red cycle be described as an alternating sequence of distinct vertices and
distinct edges as A1e1A2e2A3 · · ·A`e`A1. Each vertex A1,A2, . . . ,A` has a
blue edge incident to it; say blue edge fi is incident to vertex Ai . Assign to
red edge ei the same number as assigned to edge fi , for 1 ≤ i ≤ `.
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Theorem 3.2.4

Theorem 3.2.4 (continued)

Proof (continued).

(In Figure 3.2.6, the edges drawn
as straight lines are blue and the
edges drawn as curves are red
edges.) Every edge is now labeled
in such a way that the three edges
with the same number form a path of
length three (a red edge, followed
by a blue edge, followed by a
different red edge). So G has a
decomposition into paths of length
three, as claimed.
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