Introduction to Graph Theory ### **Chapter 4. Extremal Problems** 4.1. A Theorem of Turan—Proofs of Theorems May 21, 2022 Introduction to Graph Theory May 21, 2022 3 / 14 # Theorem 4.1.A (continued) **Theorem 4.1.A.** The largest graph G (that is, with the most edges) with chromatic number two and n vertices is a complete bipartite graph K_{n_1,n_2} where $n_1 = \lfloor n/2 \rfloor$ and $n_2 = \lceil n/2 \rceil$. **Proof (continued).** ASSUME $n_1 + 2 \le n_2$, then we can create another complete bipartite graph \hat{G} with $n_1 + 1$ blue vertices and $n_2 - 1$ red vertices. Then G has $n_1 n_2$ edges, and \hat{G} has $(n_1 + 1)(n_2 - 1)$ edges. We have $(n_1 + 1)(n_2 - 1) - n_1 n_2 = n_2 - n_1 - 1$. Since we assumed $n_2 - n_1 > 2$ then $n_2 - n_1 - 1 > 1$, and hence \hat{G} has at least one more edge than G, still has chromatic number two, and has n vertices. But this is a CONTRADICTION to the fact that G is a largest chromatic number two graph with *n* vertices. So the assumption that $n_1 + 2 < n_2$ is false (and hence $n_1 + 2 > n_2$) and (since $n_1 \le n_2$) we must have $n_2 - n_1 = 0$ or $n_2 - n_1 = 1$; that is, $|n_1 - n_2| \le 1$. Since $n_1 + n_2 = n$, then we must have $n_1 = \lfloor n/2 \rfloor$ and $n_2 = \lceil n/2 \rceil$, as claimed. ### Theorem 4.1.A **Theorem 4.1.A.** The largest graph G (that is, with the most edges) with chromatic number two and n vertices is a complete bipartite graph K_{n_1,n_2} where $n_1 = |n/2|$ and $n_2 = [n/2]$. **Proof.** Let graph G have chromatic number two based on the colors, say, red and blue, and let G be a largest such graph on n vertices. If a red vertex is not adjacent to a blue vertex, then an edge can be added joining these two vertices (increasing the number of edges). So in a largest graph, every blue vertex is adjacent to every red vertex and so a largest such graph is a complete bipartite graph (of course, no two red vertices are adjacent and no two blue vertices are adjacent). Suppose there are n_1 blue vertices and n_2 red vertices so that $n_1 + n_2 = n$. Suppose that $n_1 < n_2$. ## Theorem 4.1.1 **Theorem 4.1.1.** The largest graph G (that is, with the most edges) with chromatic number k and n vertices is a complete k-partite graph $K_{n_1,n_2,...n_k}$ where $n = n_1 + n_2 + \cdots + n_k$ and $|n_i - n_i| \le 1$. **Proof.** Let graph G have chromatic number k based on the colors, say, $i = 1, 2, \dots, k$, and let G be a largest such graph on n vertices. Let m_i be the number of vertices colored with color i. Then $n = n_1 + n_2 + \cdots + n_k$. Since G has a maximum number of edges, every pair of vertices that are colored with different colors is adjacent. So G is a complete k-partite graph $K_{n_1,n_2,...,n_k}$. Let the number of edges in a k-partite graph $K_{n_1,n_2,...,n_k}$ be denoted by $A(n_1, n_2, \ldots, n_k)$. Then we claim $A(n_1, n_2, n_3, \dots, n_k) = n_1 n_2 + A(n_1 + n_2, n_3, \dots, n_k)$. This holds because on the right-hand side $A(n_1 + n_2, n_3, \dots, n_k)$ are the edges in a (k-1)-partite graph, where we have combined the first two partite sets of $K_{n_1,n_2,...,n_k}$ into a single partite set (and so we have lost the $n_1 n_2$ edges between the first two partite sets). # Theorem 4.1.1 (continued 1) **Theorem 4.1.1.** The largest graph G (that is, with the most edges) with chromatic number k and n vertices is a complete k-partite graph $K_{n_1,n_2,...n_k}$ where $n = n_1 + n_2 + \cdots + n_k$ and $|n_i - n_i| \le 1$. **Proof (continued).** ASSUME that in *G* any two of the numbers n_1, n_2, \dots, n_k differ by more that one, say (without loss of generality) $n_1 + 2 \le n_2$ where $n_1 \le n_2$. Then we can create another complete k-partite graph $\hat{G} = K_{n_1+1,n_2-1,n_3,...,n_k}$. The number of edges in \hat{G} is then $A(n_1+1, n_2-1, n_3, \ldots, n_k) = (n_1+1)(n_2-1) + A(n_1+n_2, n_3, \ldots, n_k).$ The number of edges in \hat{G} minus the number of edges in G is $(n_1+1)(n_2-1)-n_1n_2=n_2-n_1-1$, because there are the same number of edges between the first two partite sets and the other partite sets in both G and \hat{G} , but between the first two partite sets there at $(n_1+1)(n_2-1)$ edges in \hat{G} and n_1n_2 edges edges in G. Introduction to Graph Theory May 21, 2022 Introduction to Graph Theory May 21, 2022 7 / 14 ### Theorem 4.1.2* **Theorem 4.1.2*.** The largest graph (that is, with the most edges) with nvertices that contains no triangle is the complete bipartite graph K_{n_1,n_2} with $n = n_1 + n_2$ and $|n_1 - n_2| \le 1$. **Proof.** Let G be a graph with n vertices that does not contain a triangle, and let V be the vertex set of G. Let x be a vertex of G with the largest degree in G; that is, $\deg_G(x)$ is maximal. Consider the set W of vertices of G that are adjacent to x (W is often called the *neighborhood* of x). No two vertices in W can be adjacent, since this would yield a triangle in G. # Theorem 4.1.1 (continued 2) **Theorem 4.1.1.** The largest graph G (that is, with the most edges) with chromatic number k and n vertices is a complete k-partite graph $K_{n_1,n_2,...n_k}$ where $n = n_1 + n_2 + \cdots + n_k$ and $|n_i - n_i| \le 1$. **Proof (continued).** Since $n_2 - n_1 > 2$ we have $n_2 - n_1 - 1 > 1$, \hat{G} has at least one more edge then G, CONTRADICTING the fact that G is a largest chromatic number k graph on n vertices. So the assumption that $n_1 + 2 \le n_2$ is false (and hence $n_1 + 2 > n_2$) and (since $n_1 \le n_2$) we must have $n_2 - n_1 = 0$ or $n_2 - n_1 = 1$; that is, $|n_1 - n_2| < 1$. Since the result holds for any n_1 and n_2 , we conclude that $K_{n_1,n_2,...n_k}$ where $n = n_1 + n_2 + \cdots + n_k$ and $|n_i - n_i| \le 1$ for all $1 \le i, j \le k$, as claimed. \square # Theorem 4.1.2* (continued 1) **Proof (continued).** Define a new graph H with vertex set V, and let Wbe the same subset of V as above. Let H be the complete bipartite graph with all edges joining elements of V-W to elements of W. If z is a vertex in V-W, then $\deg_H(z)=\deg_H(x)=\deg(x)>\deg_G(z)$, since we chose x in G as a vertex of maximal degree in G. # Theorem 4.1.2* (continued 2) **Theorem 4.1.2*.** The largest graph (that is, with the most edges) with nvertices that contains no triangle is the complete bipartite graph K_{n_1,n_2} with $n = n_1 + n_2$ and $|n_1 - n_2| \le 1$. **Proof (continued).** Let the number of vertices in W be w. Then if z is a vertex in W, $\deg_H(z) = n - w > \deg_C(z)$, since no two vertices in W could be adjacent in G (because G contains no triangle). So in graph H, every vertex z in G satisfies $\deg_G(z) \leq \deg_H(z)$. So the total number of edges in H must be at least the number of edges in G. Since G is an arbitrary graph with n vertices that does not contain a triangle, then we see that H is the largest such graph. Since H is a complete bipartite graph with partite sets of sizes, say, n_1 and n_2 (notice that $w \in \{n_1, n_2\}$ is the maximum degree of a vertex in G and in H), and H is a largest such bipartite graph, then we have from the proof of Theorem 4.1.1 that Hmust be of the form $H = K_{n_1,n_2}$ where $n = n_1 + n_2$ and $|n_1 - n_2| \le 1$, as claimed. Introduction to Graph Theory 10 / 14 Introduction to Graph Theory May 21, 2022 11 / 14 # Lemma 4.1.3 (continued 1) **Proof (continued).** So by the induction hypothesis, the lemma holds for G_0 , and so there exists a (k-1)-partite graph H_0 such that $\deg_{G_0}(z) \leq \deg_{H_0}(z)$ for every vertex z in W. Next, connect each vertex in V-W to every vertex in H_0 to form graph H. For every vertex z in V - W we have (in graph G) $\deg_G(z) \leq \deg_G(x)$, since x has maximum degree in graph G, and $\deg_G(x) = \deg_H(x) = \deg_H(z)$ since every vertex in V - W is connected to every vertex in W in graph H. So for every vertex z in V - W we have $$\deg_G(z) \le \deg_H(z). \tag{*}$$ ### Lemma 4.1.3 **Lemma 4.1.3.** If G is a graph on n vertices that contains no K_{k+1} then there is a k-partite graph H with the same vertex set as G such that $\deg_G(z) \leq \deg_H(z)$ for every vertex z of G. **Proof.** We give an inductive proof on $k \ge 2$. The base case k = 2 is given in the proof of Theorem 4.1.2*. For the induction hypothesis, suppose that the lemma holds for all values less than k. Let G be a graph with n vertices that does not contain a K_{k+1} . Let V be the vertex set of G, and let x be a vertex of G with $\deg_G(x)$ maximum. Let W be the set of vertices adjacent to x in G (i.e., W is the neighborhood of x), and let G_0 be the subgraph of G induced by the set W. Now G_0 cannot contain a K_k , otherwise G would contain a K_{k+1} since x is adjacent to all vertices in W. # Lemma 4.1.3 (continued 2) **Proof (continued).** Now let z be a vertex in W, and let w be the number of vertices in W. Then $\deg_G(z) \leq \deg_{G_0}(z) + n - w$ since z can be adjacent to at most all of the n-w vertices in V-W in graph G; recall that G_0 is the subgraph of G induced by W and so includes all edges of G between vertices in W). Also, since $\deg_{G_0}(z) \leq \deg_{H_0}(z)$ for every vertex z in W as shown above (by the induction hypothesis) then $\deg_{G_0}(z) + n - w \leq \deg_{H_0}(z) + n - w$ for every vertex z in W. Now $\deg_{H_0}(z) + n - w = \deg_H(z)$ for every vertex z in W, since H_0 is a graph on W and H results from connecting each vertex of H to all vertices in V-W. Therefore, for all vertices z in W we have $$\deg(z) \le \deg_{G_0}(z) + n - w \le \deg_{H_0}(z) + n - w \le \deg_{H}(z). \tag{**}$$ Hence, combining (*) and (**), we have $\deg_G(z) \leq \deg_H(z)$ for every vertex z in G, as claimed. Therefore, by mathematical induction on k, the lemma holds for all k. ### Theorem 4.1.2. Turan's Theorem ### Theorem 4.1.2. Turan's Theorem. The largest graph (that is, with the most edges) with n vertices that contains no subgraph isomorphic to K_{k+1} is a complete k-partite graph K_{n_1,n_2,\ldots,n_k} with $n=n_1+n_2+\cdots+n_k$ and $|n_i-n_j|\leq 1$. **Proof.** Let G be a graph with n vertices that does not contain a subgraph isomorphic to K_{k+1} . Then by Lemma 4.1.3, G can be used to construct a k-partite graph (denoted H in Lemma 4.1.3) without decreasing the number of edges. By Theorem 4.1.1, the largest k-partite graph with n vertices is the complete k-partite graph K_{n_1,n_2,\ldots,n_k} with $|n_i-n_j|\leq 1$. So from given graph G, we can construct graph H and then add edges as described in Theorem 4.1.1 until we have the largest such k-partite graph, with the structure as claimed. () Introduction to Graph Theory May 21, 2022 14 / 14