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Chapter 4. Extremal Problems
4.1. A Theorem of Turan—Proofs of Theorems
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Theorem 4.1.A

Theorem 4.1.A

Theorem 4.1.A. The largest graph G (that is, with the most edges) with
chromatic number two and n vertices is a complete bipartite graph Kn1,n2

where n1 = bn/2c and n2 = dn/2e.

Proof. Let graph G have chromatic number two based on the colors, say,
red and blue, and let G be a largest such graph on n vertices. If a red
vertex is not adjacent to a blue vertex, then an edge can be added joining
these two vertices (increasing the number of edges). So in a largest graph,
every blue vertex is adjacent to every red vertex and so a largest such
graph is a complete bipartite graph (of course, no two red vertices are
adjacent and no two blue vertices are adjacent). Suppose there are n1 blue
vertices and n2 red vertices so that n1 + n2 = n. Suppose that n1 ≤ n2.
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Theorem 4.1.A

Theorem 4.1.A (continued)

Theorem 4.1.A. The largest graph G (that is, with the most edges) with
chromatic number two and n vertices is a complete bipartite graph Kn1,n2

where n1 = bn/2c and n2 = dn/2e.

Proof (continued). ASSUME n1 + 2 ≤ n2, then we can create another
complete bipartite graph Ĝ with n1 + 1 blue vertices and n2 − 1 red
vertices. Then G has n1n2 edges, and Ĝ has (n1 + 1)(n2 − 1) edges. We
have (n1 + 1)(n2 − 1) − n1n2 = n2 − n1 − 1. Since we assumed
n2 − n1 ≥ 2 then n2 − n1 − 1 ≥ 1, and hence Ĝ has at least one more edge
than G , still has chromatic number two, and has n vertices. But this is a
CONTRADICTION to the fact that G is a largest chromatic number two
graph with n vertices. So the assumption that n1 + 2 ≤ n2 is false (and
hence n1 + 2 > n2) and (since n1 ≤ n2) we must have n2 − n1 = 0 or
n2 − n1 = 1; that is, |n1 − n2| ≤ 1. Since n1 + n2 = n, then we must have
n1 = bn/2c and n2 = dn/2e, as claimed.
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Theorem 4.1.1

Theorem 4.1.1

Theorem 4.1.1. The largest graph G (that is, with the most edges) with
chromatic number k and n vertices is a complete k-partite graph
Kn1,n2,...nk

where n = n1 + n2 + · · · + nk and |ni − nj | ≤ 1.

Proof. Let graph G have chromatic number k based on the colors, say,
i = 1, 2, . . . , k, and let G be a largest such graph on n vertices. Let mi be
the number of vertices colored with color i . Then n = n1 + n2 + · · · + nk .
Since G has a maximum number of edges, every pair of vertices that are
colored with different colors is adjacent. So G is a complete k-partite
graph Kn1,n2,...,nk

.

Let the number of edges in a k-partite graph Kn1,n2,...,nk

be denoted by A(n1, n2, . . . , nk). Then we claim
A(n1, n2, n3, . . . , nk) = n1n2 + A(n1 + n2, n3, . . . , nk). This holds because
on the right-hand side A(n1 + n2, n3, . . . , nk) are the edges in a
(k − 1)-partite graph, where we have combined the first two partite sets of
Kn1,n2,...,nk

into a single partite set (and so we have lost the n1n2 edges
between the first two partite sets).
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Theorem 4.1.1

Theorem 4.1.1 (continued 1)

Theorem 4.1.1. The largest graph G (that is, with the most edges) with
chromatic number k and n vertices is a complete k-partite graph
Kn1,n2,...nk

where n = n1 + n2 + · · · + nk and |ni − nj | ≤ 1.

Proof (continued). ASSUME that in G any two of the numbers
n1, n2, . . . , nk differ by more that one, say (without loss of generality)
n1 + 2 ≤ n2 where n1 ≤ n2. Then we can create another complete
k-partite graph Ĝ = Kn1+1,n2−1,n3,...,nk

. The number of edges in Ĝ is then
A(n1 + 1, n2 − 1, n3, . . . , nk) = (n1 + 1)(n2 − 1) + A(n1 + n2, n3, . . . , nk).
The number of edges in Ĝ minus the number of edges in G is
(n1 + 1)(n2 − 1)− n1n2 = n2 − n1 − 1, because there are the same number
of edges between the first two partite sets and the other partite sets in
both G and Ĝ , but between the first two partite sets there at
(n1 + 1)(n2 − 1) edges in Ĝ and n1n2 edges edges in G .
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The number of edges in Ĝ minus the number of edges in G is
(n1 + 1)(n2 − 1)− n1n2 = n2 − n1 − 1, because there are the same number
of edges between the first two partite sets and the other partite sets in
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Theorem 4.1.1

Theorem 4.1.1 (continued 2)

Theorem 4.1.1. The largest graph G (that is, with the most edges) with
chromatic number k and n vertices is a complete k-partite graph
Kn1,n2,...nk

where n = n1 + n2 + · · · + nk and |ni − nj | ≤ 1.

Proof (continued). Since n2 − n1 ≥ 2 we have n2 − n1 − 1 ≥ 1, Ĝ has at
least one more edge then G , CONTRADICTING the fact that G is a
largest chromatic number k graph on n vertices. So the assumption that
n1 + 2 ≤ n2 is false (and hence n1 + 2 > n2) and (since n1 ≤ n2) we must
have n2 − n1 = 0 or n2 − n1 = 1; that is, |n1 − n2| ≤ 1. Since the result
holds for any n1 and n2, we conclude that Kn1,n2,...nk

where
n = n1 +n2 + · · ·+nk and |ni −nj | ≤ 1 for all 1 ≤ i , j ≤ k, as claimed.
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Theorem 4.1.2*

Theorem 4.1.2*

Theorem 4.1.2*. The largest graph (that is, with the most edges) with n
vertices that contains no triangle is the complete bipartite graph Kn1,n2

with n = n1 + n2 and |n1 − n2| ≤ 1.

Proof. Let G be a graph with n vertices that does not contain a triangle,
and let V be the vertex set of G . Let x be a vertex of G with the largest
degree in G ; that is, degG (x) is maximal. Consider the set W of vertices
of G that are adjacent to x (W is often called the neighborhood of x). No
two vertices in W can be adjacent, since this would yield a triangle in G .
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Theorem 4.1.2*

Theorem 4.1.2* (continued 1)

Proof (continued). Define a new graph H with vertex set V , and let W
be the same subset of V as above. Let H be the complete bipartite graph
with all edges joining elements of V − W to elements of W .

If z is a vertex in V − W , then degH(z) = degH(x) = deg(x) ≥ degG (z),
since we chose x in G as a vertex of maximal degree in G .
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Theorem 4.1.2*

Theorem 4.1.2* (continued 2)

Theorem 4.1.2*. The largest graph (that is, with the most edges) with n
vertices that contains no triangle is the complete bipartite graph Kn1,n2

with n = n1 + n2 and |n1 − n2| ≤ 1.

Proof (continued). Let the number of vertices in W be w . Then if z is a
vertex in W , degH(z) = n − w ≥ degG (z), since no two vertices in W
could be adjacent in G (because G contains no triangle). So in graph H,
every vertex z in G satisfies degG (z) ≤ degH(z). So the total number of
edges in H must be at least the number of edges in G . Since G is an
arbitrary graph with n vertices that does not contain a triangle, then we
see that H is the largest such graph. Since H is a complete bipartite graph
with partite sets of sizes, say, n1 and n2 (notice that w ∈ {n1, n2} is the
maximum degree of a vertex in G and in H), and H is a largest such
bipartite graph, then we have from the proof of Theorem 4.1.1 that H
must be of the form H = Kn1,n2 where n = n1 + n2 and |n1 − n2| ≤ 1, as
claimed.
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Lemma 4.1.3

Lemma 4.1.3

Lemma 4.1.3. If G is a graph on n vertices that contains no Kk+1 then
there is a k-partite graph H with the same vertex set as G such that
degG (z) ≤ degH(z) for every vertex z of G .

Proof. We give an inductive proof on k ≥ 2. The base case k = 2 is given
in the proof of Theorem 4.1.2*. For the induction hypothesis, suppose
that the lemma holds for all values less than k.

Let G be a graph with n vertices that does
not contain a Kk+1. Let V be the vertex set
of G , and let x be a vertex of G with degG (x)
maximum. Let W be the set of vertices
adjacent to x in G (i.e., W is the neighborhood
of x), and let G0 be the subgraph of G induced by the set W . Now G0

cannot contain a Kk , otherwise G would contain a Kk+1 since x is
adjacent to all vertices in W .
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Lemma 4.1.3

Lemma 4.1.3 (continued 1)

Proof (continued). So by the induction hypothesis, the lemma holds for
G0, and so there exists a (k − 1)-partite graph H0 such that
degG0

(z) ≤ degH0
(z) for every vertex z in W . Next, connect each vertex

in V − W to every vertex in H0 to form graph H.

For every vertex z in V − W we have
(in graph G ) degG (z) ≤ degG (x),
since x has maximum degree in graph G ,
and degG (x) = degH(x) = degH(z)
since every vertex in V − W is connected
to every vertex in W in graph H.
So for every vertex z in V − W we have

degG (z) ≤ degH(z). (∗)
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Lemma 4.1.3

Lemma 4.1.3 (continued 2)

Proof (continued). Now let z be a vertex in W , and let w be the
number of vertices in W . Then degG (z) ≤ degG0

(z) + n − w since z can
be adjacent to at most all of the n − w vertices in V − W in graph G ;
recall that G0 is the subgraph of G induced by W and so includes all edges
of G between vertices in W ). Also, since degG0

(z) ≤ degH0
(z) for every

vertex z in W as shown above (by the induction hypothesis) then
degG0

(z) + n − w ≤ degH0
(z) + n − w for every vertex z in W . Now

degH0
(z) + n − w = degH(z) for every vertex z in W , since H0 is a graph

on W and H results from connecting each vertex of H to all vertices in
V − W . Therefore, for all vertices z in W we have

deg(z) ≤ degG0
(z) + n − w ≤ degH0

(z) + n − w ≤ degH(z). (∗∗)

Hence, combining (∗) and (∗∗), we have degG (z) ≤ degH(z) for every
vertex z in G , as claimed. Therefore, by mathematical induction on k, the
lemma holds for all k.
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Theorem 4.1.2. Turan’s Theorem

Theorem 4.1.2. Turan’s Theorem

Theorem 4.1.2. Turan’s Theorem.
The largest graph (that is, with the most edges) with n vertices that
contains no subgraph isomorphic to Kk+1 is a complete k-partite graph
Kn1,n2,...,nk

with n = n1 + n2 + · · · + nk and |ni − nj | ≤ 1.

Proof. Let G be a graph with n vertices that does not contain a subgraph
isomorphic to Kk+1. Then by Lemma 4.1.3, G can be used to construct a
k-partite graph (denoted H in Lemma 4.1.3) without decreasing the
number of edges. By Theorem 4.1.1, the largest k-partite graph with n
vertices is the complete k-partite graph Kn1,n2,...,nk

with |ni − nj | ≤ 1. So
from given graph G , we can construct graph H and then add edges as
described in Theorem 4.1.1 until we have the largest such k-partite graph,
with the structure as claimed.
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