Introduction to Graph Theory

Chapter 4. Extremal Problems

 4.2. Cages—Proofs of TheoremsPearls in Graph Theory
A Compretiensive introdiction Nora Hartsfield Gerhard Ringel

Table of contents

(1) Theorem 4.2.1
(2) Theorem 4.2.2

Theorem 4.2.1

Theorem 4.2.1. The Petersen graph is the unique 5-cage.
Proof. Let G be any 5-cage. We will follow a sequence of general steps and see that this necessarily leads to the Petersen graph. Fix a vertex of G that lies on a 5 -cycle and denote it as 1 . Since G is cubic, 1 has three neighbors which we denote 2, 3, and 4. Now each of the vertices 2, 3, 4 has two neighbors in addition to 1, as shown in Figure 4.2.1.

Theorem 4.2.1

Theorem 4.2.1. The Petersen graph is the unique 5-cage.
Proof. Let G be any 5-cage. We will follow a sequence of general steps and see that this necessarily leads to the Petersen graph. Fix a vertex of G that lies on a 5 -cycle and denote it as 1 . Since G is cubic, 1 has three neighbors which we denote 2, 3, and 4. Now each of the vertices 2, 3, 4 has two neighbors in addition to 1, as shown in Figure 4.2.1.

Theorem 4.2.1

Theorem 4.2.1. The Petersen graph is the unique 5-cage.
Proof. Let G be any 5-cage. We will follow a sequence of general steps and see that this necessarily leads to the Petersen graph. Fix a vertex of G that lies on a 5 -cycle and denote it as 1 . Since G is cubic, 1 has three neighbors which we denote 2, 3, and 4. Now each of the vertices 2, 3, 4 has two neighbors in addition to 1, as shown in Figure 4.2.1.

Theorem 4.2.1 (continued 1)

Theorem 4.2.1. The Petersen graph is the unique 5-cage.
Proof (continued). Denote these vertices as 5, 6, 7, 8, 9, and 10 as given in the figure. None of $5,6,7,8,9,10$ can be equal to any of 2,3 , or 4 because this would imply that G contains a triangle. Also, all vertices 1, 2, ..., 10 must be distinct, or else G would contain a cycle of length three or four. So we have that a 5 -cage must have at least 10 vertices. Since a g-cage is a smallest cubic graph of girth g, then if we can construct a 5 -cage on 10 vertices then it is smallest. Now vertex 5 is adjacent to two more vertices and it cannot be adjacent to vertex 6 (or we get a triangle) It then must be adjacent to one of 7 or 8 and one of 9 or 10 (for if it is adjacent to both 7 or 8 then there is a 4 -cycle, and similarly if it is adjacent to both 9 and 10). Without loss of generality, say 5 is adjacent to 7 and 9. Similarly, vertex 6 cannot be adjacent to 7 or 9 (or we get a 4 -cycle), so 6 must be adjacent to 8 and 10 . See the figure below.

Theorem 4.2.1 (continued 1)

Theorem 4.2.1. The Petersen graph is the unique 5-cage.
Proof (continued). Denote these vertices as 5, 6, 7, 8, 9, and 10 as given in the figure. None of $5,6,7,8,9,10$ can be equal to any of 2,3 , or 4 because this would imply that G contains a triangle. Also, all vertices 1, 2, ..., 10 must be distinct, or else G would contain a cycle of length three or four. So we have that a 5 -cage must have at least 10 vertices. Since a g-cage is a smallest cubic graph of girth g, then if we can construct a 5 -cage on 10 vertices then it is smallest. Now vertex 5 is adjacent to two more vertices and it cannot be adjacent to vertex 6 (or we get a triangle). It then must be adjacent to one of 7 or 8 and one of 9 or 10 (for if it is adjacent to both 7 or 8 then there is a 4 -cycle, and similarly if it is adjacent to both 9 and 10). Without loss of generality, say 5 is adjacent to 7 and 9. Similarly, vertex 6 cannot be adjacent to 7 or 9 (or we get a 4 -cycle), so 6 must be adjacent to 8 and 10. See the figure below.

Theorem 4.2.1 (continued 2)

Theorem 4.2.1. The Petersen graph is the unique 5-cage.
Proof (continued). Again, vertex 7 cannot be adjacent to 8 or 9 (or we get a triangle), so 7 must be adjacent to 10 . Since G is cubic, 8 and 9 must be adjacent. See Figure 4.2.2.

Figure 4.2.2

Theorem 4.2.1 (continued 2)

Theorem 4.2.1. The Petersen graph is the unique 5-cage.
Proof (continued). Again, vertex 7 cannot be adjacent to 8 or 9 (or we get a triangle), so 7 must be adjacent to 10 . Since G is cubic, 8 and 9 must be adjacent. See Figure 4.2.2.

Figure 4.2.2

Theorem 4.2.1 (continued 3)

Proof (continued).

Figure 4.2.2

Figure 4.2.3. The Petersen graph.

Since G is a cubic graph of girth 5 on the smallest possible number of vertices (and hence on the smallest number of edges), then it is a 5-cage. Since no restrictions were put on the construction of this 5-cage, then any 5-cage is necessarily isomorphic to G and, as shown in Figure 4.2.3, G is isomorphic to the Petersen graph.

Theorem 4.2.2

Theorem 4.2.2. The Heawood graph of Figure 4.2 .4 is the unique 6-cage. Proof. Let G be any 6 -cage. Fix an edge e of G and label its endpoints 1 and 2 . Since G is cubic, each endpoint is adjacent to two distinct vertices, say vertices 3, 4, 5, and 6 as shown in Figure 4.2.5.

Theorem 4.2.2

Theorem 4.2.2. The Heawood graph of Figure 4.2 .4 is the unique 6-cage. Proof. Let G be any 6 -cage. Fix an edge e of G and label its endpoints 1 and 2 . Since G is cubic, each endpoint is adjacent to two distinct vertices, say vertices 3, 4, 5, and 6 as shown in Figure 4.2.5.

Figure 4.2.5

None of 3, 4, 5, 6 can be adjacent to each other (otherwise G would have a cycle of length 3 or 4), and so these vertices must be adjacent to (in pairs) some vertices $7,8,9,10,11,12,13,14$.

Theorem 4.2.2

Theorem 4.2.2. The Heawood graph of Figure 4.2 .4 is the unique 6-cage.
Proof. Let G be any 6 -cage. Fix an edge e of G and label its endpoints 1 and 2. Since G is cubic, each endpoint is adjacent to two distinct vertices, say vertices 3, 4, 5, and 6 as shown in Figure 4.2.5.

Figure 4.2.5
None of $3,4,5,6$ can be adjacent to each other (otherwise G would have a cycle of length 3 or 4), and so these vertices must be adjacent to (in pairs) some vertices $7,8,9,10,11,12,13,14$.

Theorem 4.2.2 (continued 1)

Proof (continued).

These new vertices must be distinct (otherwise G would have a cycle of length 4 or 5). So a 6 -cage must have at least 14 vertices. Since a g-cage is a smallest cubic graph of girth g, then if we can construct a 6 -cage on 14 vertices it is smallest. None of $7,8,9,10$ can be adjacent (or else G would contain either a 3 -cycle or a 5 -cycle); similarly, non of $11,12,13,14$ can be adjacent. If 7 is adjacent to both 11 and 12 and on of 13 or 14 , say 7 is adjacent to 11 and 13.

Theorem 4.2.2 (continued 2)

Proof (continued).

Vertex 8 has similar constraints on its neighbors, so say 8 is adjacent to 12 and 14 (notice that vertices 7 and 8 cannot share a neighbor in addition to 3 , or else G contains a 4 -cycle). Similarly, vertex 9 (and vertex 10) must be adjacent to one of 11 or 12 and one of 13 or 14 . Say 9 is adjacent to 11 and 13, and 10 is adjacent to 12 and 14 , as in the figure below. (There is a symmetry here between the roles of (7 and 8) and (9 and 10), as well as a symmetry between (11 and 12) and (13 and 14).)

Theorem 4.2.2 (continued 3)

Proof (continued). We then have the graph:

The blue edges are the outer cycle of the Heawood graph.

Theorem 4.2.2 (continued 4)

Theorem 4.2.2. The Heawood graph of Figure 4.2 .4 is the unique 6-cage.

Proof (continued).

We see in this figure that the resulting graph is isomorphic to Heawood's graph, as claimed.

