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Lemma 4.3.A

Lemma 4.3.A

Lemma 4.3.A. If the edges of K6 are colored with two colors, then there
must be a monochromatic triangle. Also, K6 is minimal complete graph
with respect to this property.

Proof. Suppose the edges of K6 are colored red and blue. Let v be any
vertex of K6. Since there are five edges incident to v , then there are either
at least three red edges or three blue edges incident to v . Say, without loss
of generality, there are three red edges incident to v .

I any of the dotted edges in Figure 4.3.1 is
red, there is a red triangle. If all the dotted
edges are blue, then they form a blue triangle.
Thus any edge-coloring of K6 by two colors
contains a monochromatic triangle.
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Lemma 4.3.A

Lemma 4.3.A (continued)

Proof (continued). To show the minimality of K6 with respect to the
property, we simply need to show that K5 can be two colored in such a
way as to not have a monochromatic triangle (then for the cases of K4

and K3, we can simply treat these as subgraphs of the two colored K5).
This is given in Figure 4.3.2.
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Lemma 4.3.B

Lemma 4.3.B

Lemma 4.3.B. If the edges of K9 are colored with red and blue, then
there is a subgraph of this K9 that is either a red K3 or a blue K4. Also,
K9 is minimal complete graph with respect to this property.

Proof. Assume that the edges of K9 are colored with red and blue. If any
vertex of K9 has four red edges incident to it then claim that the K9 must
contain a red triangle or a blue K4. See Figure 4.3.3.

If any of the dotted lines is red, then
the graph contains a red triangle.
If all of the dotted lines are blue, then
the graph contains a blue K4.
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Lemma 4.3.B

Lemma 4.3.B (continued 1)

Proof (continued). If some vertex has six blue edges incident with it
then claim that the K9 must contain a red triangle or a blue K4. For such
a vertex, the other ends of these six blue edges determine a K6 subgraph
of K9 (the K6 is a subgraph of K9 induced by the set of six end vertices).
By Lemma 4.3.A, the two coloring of the K6 subgraph contains a
monochromatic triangle. If the triangle is red, then we have the desired
red triangle in the K9. If the triangle is blue, then it together with the blue
edges incident with vertex v gives a blue K4. So the claim holds if some
vertex has four red edges incident to it, or has six blue edges incident to it.

ASSUME no vertex has four red edges incident to it, nor six blue edges
incident to it. In K9 every vertex is of degree eight, so every vertex must
have three red edges incident and five blue edges incident to it. Then the
red edges form (induce) a cubic spanning subgraph of K9, and the blue
edges form (induce) a spanning subgraph of K9 that is regular of degree 5.
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Lemma 4.3.B

Lemma 4.3.B (continued 2)

Proof (continued). But no graph can have an odd number of odd degree
vertices by Theorem 1.1.1, a CONTRADICTION. So the assumption is
false, and every vertex must have either four red edges or six blue edges
incident to it. Under these conditions, the claim holds as shown above.

To show the minimality of K9 with respect to the property, we simply need
to show that K8 can be two colored in such a way as to have neither a red
K3 nor a blue K4. This is given in Figure 4.3.2.
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Theorem 4.3.2

Theorem 4.3.2

Theorem 4.3.2. For every m and n, there exists the Ramsey number
r(m, n) such that edge-coloring Kr(m,n) with red and blue implies that
Kr(m,n) contains either a red Km or a blue Kn. Furthermore, r(m, n)
satisfies the inequality r(m, n) ≤ r(m − 1, n) + r(m, n − 1).

Proof. We give a proof using mathematical induction on k = m + n. Since
K1 has no edges, the smallest case that makes sense is when m = n = 2
and k = 4. Now r(2, 2) = 2 by Note 4.3.A, and r(1, 2) = r(2, 1) = 1 by
Note 4.3.A, so r(2, 2) = 2 ≤ 1 + 1 = r(1, 2) + r(2, 1), establishing the
base case of k = m + n = 4.

For the induction hypothesis, suppose the
theorem is true for all values less than k = m + n. Let G be the complete
graph with r(m − 1, n) + r(m, n − 1) vertices. Suppose the edges of G are
colored red and blue. Let v be any vertex of G .
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Theorem 4.3.2

Theorem 4.3.2 (continued 1)

Proof (continued). Since G has r(m − 1, n) + r(m, n − 1) vertices, then
the degree of v is r(m − 1, n) + r(m, n − 1)− 1. So if there are strictly
fewer then r(m− 1, n) red edges incident to v , then there must be at least
r(m, n − 1) blue edges incident to v . That is, vertex v has either
r(m − 1, n) red edges incident to it or r(m, n − 1) blue edges incident to
it. We consider each of these two possibilities.

() Introduction to Graph Theory May 8, 2022 9 / 13



Theorem 4.3.2

Theorem 4.3.2 (continued 2)

Theorem 4.3.2. For every m and n, there exists the Ramsey number
r(m, n) such that edge-coloring Kr(m,n) with red and blue implies that
Kr(m,n) contains either a red Km or a blue Kn. Furthermore, r(m, n)
satisfies the inequality r(m, n) ≤ r(m − 1, n) + r(m, n − 1).

Proof (continued). Case 1. Suppose there are r(m − 1, n) red edges
incident to v . The subgraph H induced by the other endpoints of these
edges is a complete graph with r(m − 1, n) vertices that is edge-colored
with red and blue. Since (m − 1) + n = m + n − 1 < m + n = k, then by
the induction hypothesis H contains either a red Km−1 or a blue Kn. Now
a red Km−1 in H together with v and the red edges joining v to the
vertices of the red Km−1 (these exist because v is adjacent to every vertex
of H by construction) form a red Km in G . If there is a blue Kn in H then
this blue Kn is also in G (since H is a subgraph of G ). That is, if there are
r(m − 1, n) red edges at v then G either contains a red Km or a blue Kn

and the induction step is established in this case.
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Theorem 4.3.2

Theorem 4.3.2 (continued 3)

Proof (continued). Case 2. Suppose there are r(m, n − 1) blue edges
incident to v . The subgraph I induced by the other endpoints of these
edges is a complete graph with r(m, n − 1) vertices that is edge-colored
with red and blue. Since m + (n − 1) = m + n − 1 < m + n = k, then by
the induction hypothesis I contains either a red Km or a blue Kn−1. If
there is a red Km in I then this red Km is also in G (since H is a subgraph
of G ). Now a blue Kn−1 in I together with v and the blue edges joining v
to the vertices of the blue Kn−1 (these exist because v is adjacent to every
vertex of I by construction) form a blue Kn in G . That is, if there are
r(m − 1, n) blue edges at v then G either contains a red Km or a blue Kn

and the induction step is established in this case.

Since either Case 1 or Case 2 must hold and the induction step is
established in both cases, then by mathematical induction the result
r(m, n) ≤ r(m − 1, n) + r(m, n − 1) for all m and n.
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Lemma 4.3.C

Lemma 4.3.C

Lemma 4.3.C. If the edges of K5,5 are colored with two colors, there will
be a monochromatic K2,2.

Proof. There are 25 edges in K5,5 so one of the colors will to at least 13
edges. Let S be the subgraph of K5,5 induced by these edges. Since S is
bipartite, then it will contain a (monochromatic) K2,2 precisely when two
vertices have two common neighbors. We consider three cases.

Case 1. Suppose one vertex v has degree 5 in S . Since the average
degree of the remaining four vertices in the partite set containing v is two
(because the total degree is 13), then at lest one of these remaining
vertices has degree at least two; denote it w . Since the other partite set
has five vertices, then v and w must have two neighbors in common. That
is, S (and hence K5,5) contains a K2,2.
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Lemma 4.3.C

Lemma 4.3.C (continued)

Lemma 4.3.C. If the edges of K5,5 are colored with two colors, there will
be a monochromatic K2,2.

Proof (continued). Case 2. Suppose vertex v has degree 4 in S . Since
there are at least nine edges remaining, then some vertex has degree 3 in
S ; denote it w . Then v and w must have two neighbors in common. That
is, S (and hence K5,5) contains a K2,2.

Case 3. Suppose at least three vertices in one of the partite sets have
degree at least 3 in S ; denote them u, v , and w . At least two of u, v , w
these must have two neighbors in common. That is, S (and hence K5,5)
contains a K2,2.

If none of the cases hold and there are no vertices of degree 4 or 5 and at
most two vertices of degree 3, then we could have (at most) two vertices
of degree 3 and three vertices of degree 2 for a total of (at most) 12
edges. But S has 13 edges, so these cases cover all possibilities and the
claim holds.
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