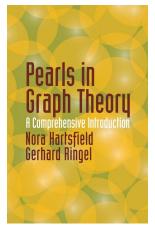
Introduction to Graph Theory

Chapter 5. Counting 5.1. Counting 1-Factors—Proofs of Theorems



- Theorem 5.1.A
- 2 Theorem 5.1.B
- 3 Theorem 5.1.C
- Theorem 5.1.D
- 5 Theorem 5.1.E

Theorem 5.1.A. There are n! 1-factors in $K_{n,n}$.

Proof. Color the vertices in one partite set red and the vertices in the other partite set blue. Also number the red vertices 1, 2, ..., n. First red vertex 1 will be one end of some edge of the 1-factor and the other end will be a blue vertex. There are *n* choices for the blue vertex and so *n* choices for the edge containing red vertex 1. Next, red vertex 2 will be one end of some edge in the 1-factor and the other end will be a blue vertex, but not the same blue vertex that was previously used. So there are n - 1 choices for the blue vertex and so n - 1 choices for the edge containing red vertex and so n - 1 choices for the blue vertex and so n - 1 choices for the blue vertex and so n - 1 choices for the blue vertex and so n - 1 choices for the blue vertex and so n - 1 choices for the blue vertex and so n - 1 choices for the blue vertex and so n - 1 choices for the blue vertex and so n - 1 choices for the blue vertex and so n - 1 choices for the blue vertex and so n - 1 choices for the blue vertex and so n - 1 choices for the blue vertex and so n - 1 choices for the edge containing red vertex and so n - 1 choices for the edge containing red vertex and so n - 1 choices for the edge containing red vertex and so n - 1 choices for the edge containing red vertex and so n - 1 choices for the edge containing red vertex and so n - 1 choices for the edge containing red vertex and so n - 1 choices for the edge containing red vertex and so n - 1 choices for the edge containing red vertex and so n - 1 choices for the edge containing red vertex and so n - 1 choices for the edge containing red vertex and so n - 1 choices for the edge containing red vertex and so n - 1 choices for the edge containing red vertex and so n - 1 choices for the edge containing red vertex and so n - 1 choices for the edge containing red vertex and so n - 1 choices for the edge containing red vertex and so n - 1 choices for the edge contain chore chore chore chore chore chore chore c

Theorem 5.1.A. There are n! 1-factors in $K_{n,n}$.

Proof. Color the vertices in one partite set red and the vertices in the other partite set blue. Also number the red vertices $1, 2, \ldots, n$. First red vertex 1 will be one end of some edge of the 1-factor and the other end will be a blue vertex. There are *n* choices for the blue vertex and so *n*. choices for the edge containing red vertex 1. Next, red vertex 2 will be one end of some edge in the 1-factor and the other end will be a blue vertex, but not the same blue vertex that was previously used. So there are n-1choices for the blue vertex and so n-1 choices for the edge containing red vertex 2. Similarly, red vertex k (where $2 \le k \le n$) will be one end of some edge in the 1-factor and the other end will be a blue vertex, but not one used in the edges containing the first k-1 red vertices.

Theorem 5.1.A. There are n! 1-factors in $K_{n,n}$.

Proof. Color the vertices in one partite set red and the vertices in the other partite set blue. Also number the red vertices $1, 2, \ldots, n$. First red vertex 1 will be one end of some edge of the 1-factor and the other end will be a blue vertex. There are *n* choices for the blue vertex and so *n*. choices for the edge containing red vertex 1. Next, red vertex 2 will be one end of some edge in the 1-factor and the other end will be a blue vertex, but not the same blue vertex that was previously used. So there are n-1choices for the blue vertex and so n-1 choices for the edge containing red vertex 2. Similarly, red vertex k (where $2 \le k \le n$) will be one end of some edge in the 1-factor and the other end will be a blue vertex, but not one used in the edges containing the first k-1 red vertices.

Theorem 5.1.A (continued)

Theorem 5.1.A. There are n! 1-factors in $K_{n,n}$.

Proof (continued). So there are n - (k - 1) = n + 1 - k choices for the blue vertex and so n + 1 - k choices for the edge containing red vertex k. By the Fundamental Counting Principle, the number of possible 1-factors is

$$\prod_{k=1}^{n} (n+1-k) = (n)(n-1)(n-2)\cdots(3)(2)(1) = n!,$$

as claimed.

Note. We could also approach this with a proof based on mathematical induction.

Theorem 5.1.A (continued)

Theorem 5.1.A. There are n! 1-factors in $K_{n,n}$.

Proof (continued). So there are n - (k - 1) = n + 1 - k choices for the blue vertex and so n + 1 - k choices for the edge containing red vertex k. By the Fundamental Counting Principle, the number of possible 1-factors is

$$\prod_{k=1}^{n} (n+1-k) = (n)(n-1)(n-2)\cdots(3)(2)(1) = n!,$$

as claimed.

Note. We could also approach this with a proof based on mathematical induction.

Theorem 5.1.B

Theorem 5.1.B. There are $\frac{n!}{2(n-k-1)!}$ different subgraphs of K_n isomorphic to path P_k .

Proof. Recall that P_k is a path of length k, of it has k edges and k + 1 vertices. If $k \ge n$ then there are no such paths in K_n , so we suppose that k < n. Notice that every path P_k in K_n is determined by an ordered (k + 1)-tuple of distinct vertices of K_n (but there is not a one-to-one correspondence between paths and (k + 1)-tuples). The (k + 1)-tuple can start at any vertex of K_n , so there are n choices for the first entry of the (k + 1)-tuple. Next, there are n - 1 choices for the second entry of the (k + 1)-tuple, since the vertices must be distinct. Similarly, for the *i*th entry in the (k + 1)-tuple (where $2 \le i \le k + 1$), there are n - (i - 1) choices of a vertex.

Theorem 5.1.B

Theorem 5.1.B. There are $\frac{n!}{2(n-k-1)!}$ different subgraphs of K_n isomorphic to path P_k .

Proof. Recall that P_k is a path of length k, of it has k edges and k + 1 vertices. If $k \ge n$ then there are no such paths in K_n , so we suppose that k < n. Notice that every path P_k in K_n is determined by an ordered (k + 1)-tuple of distinct vertices of K_n (but there is not a one-to-one correspondence between paths and (k + 1)-tuples). The (k + 1)-tuple can start at any vertex of K_n , so there are n choices for the first entry of the (k + 1)-tuple. Next, there are n - 1 choices for the second entry of the (k + 1)-tuple, since the vertices must be distinct. Similarly, for the *i*th entry in the (k + 1)-tuple (where $2 \le i \le k + 1$), there are n - (i - 1) choices of a vertex.

Theorem 5.1.B (continued)

Theorem 5.1.B. There are $\frac{n!}{2(n-k-1)!}$ different subgraphs of K_n isomorphic to path P_k .

Proof (continued). By the Fundamental Counting Principle, the number of possible (k + 1)-tuples of distinct vertices of K_n is

$$\prod_{i=1}^{k+1} (n-(i-1)) = \prod_{i=1}^{k+1} (n+1) - i$$

$$= n(n-1)(n-2)\cdots(n-k) = \frac{n!}{(n-k-1)!}$$

For each path P_k of K_n , there are two (k + 1)-tuples of distinct vertices of K_n (each has the same vertices, just in opposite orders). So the number paths P_k in K_n is half the number of such (k + 1)-tuples, namely $\frac{n!}{2(n - k - 1)!}$ as claimed.

Theorem 5.1.C

Theorem 5.1.C. There are $n\binom{n-1}{3}$ different subgraphs of K_n isomorphic to $K_{1,3}$.

Proof. For each subgraph of K_n isomorphic to $K_{1,3}$, we first choose the vertex of degree three and then choose the other three vertices. There are n choices for the degree three vertex and, since the degree one vertices can be any vertex except the one already chosen, there are $\binom{n-1}{3}$ choices for the degree one vertices. By the Fundamental Counting Principle, the number of subgraphs of K_n isomorphic to $K_{1,3}$ is $n\binom{n-1}{3}$, as claimed.

Theorem 5.1.C

Theorem 5.1.C. There are $n\binom{n-1}{3}$ different subgraphs of K_n isomorphic to $K_{1,3}$.

Proof. For each subgraph of K_n isomorphic to $K_{1,3}$, we first choose the vertex of degree three and then choose the other three vertices. There are n choices for the degree three vertex and, since the degree one vertices can be any vertex except the one already chosen, there are $\binom{n-1}{3}$ choices for the degree one vertices. By the Fundamental Counting Principle, the number of subgraphs of K_n isomorphic to $K_{1,3}$ is $n\binom{n-1}{3}$, as claimed.

Theorem 5.1.D

Theorem 5.1.D. There are $\frac{(2h-1)!}{2^{h-1}(h-1)!}$ different 1-factors in K_{2h} .

Proof. Let the number of 1-factors in K_{2h} be denoted by g(2h). Let x be an arbitrary vertex of K_{2h} . Choose an edge incident to x. Since x is in the complete graph K_{2h} , then its degree is 2h - 1 so that there are 2h - 1choices for the edge incident to x. Let the other end of the chosen edge be vertex y. We now "disregard" vertices x and y and all edges incident to them, thus modifying K_{2h} to become K_{2h-2} (this process is called *edge deletion*; see my online notes for graduate Graph Theory 1 on Section 2.1. **Subgraphs and Supergraphs**).

Theorem 5.1.D

Theorem 5.1.D. There are $\frac{(2h-1)!}{2^{h-1}(h-1)!}$ different 1-factors in K_{2h} .

Proof. Let the number of 1-factors in K_{2h} be denoted by g(2h). Let x be an arbitrary vertex of K_{2h} . Choose an edge incident to x. Since x is in the complete graph K_{2h} , then its degree is 2h-1 so that there are 2h-1choices for the edge incident to x. Let the other end of the chosen edge be vertex y. We now "disregard" vertices x and y and all edges incident to them, thus modifying K_{2h} to become K_{2h-2} (this process is called *edge deletion*; see my online notes for graduate Graph Theory 1 on Section 2.1. Subgraphs and Supergraphs). Therefore (by the Fundamental Counting Principle) we have the number of 1-factors in K_{2h} is 2h - 1 times the number of 1-factors in K_{2h-1} ; that is, g(2h) = (2h-1)g(2h-2). Similarly, g(2h-2) = (2h-3)g(2h-4), so that g(2h) = (2h - 1)(2h - 3)g(2h - 4).

Theorem 5.1.D

Theorem 5.1.D. There are $\frac{(2h-1)!}{2^{h-1}(h-1)!}$ different 1-factors in K_{2h} .

Proof. Let the number of 1-factors in K_{2h} be denoted by g(2h). Let x be an arbitrary vertex of K_{2h} . Choose an edge incident to x. Since x is in the complete graph K_{2h} , then its degree is 2h-1 so that there are 2h-1choices for the edge incident to x. Let the other end of the chosen edge be vertex y. We now "disregard" vertices x and y and all edges incident to them, thus modifying K_{2h} to become K_{2h-2} (this process is called *edge deletion*; see my online notes for graduate Graph Theory 1 on Section 2.1. Subgraphs and Supergraphs). Therefore (by the Fundamental Counting Principle) we have the number of 1-factors in K_{2h} is 2h - 1 times the number of 1-factors in K_{2h-1} ; that is, g(2h) = (2h-1)g(2h-2). Similarly, g(2h-2) = (2h-3)g(2h-4), so that g(2h) = (2h-1)(2h-3)g(2h-4).

Theorem 5.1.D (continued)

Proof. Iterating this process we have

$$g(2h) = (2h-1)(2h-3)(2h-5)\cdots(5)(3)g(1)$$

= $(2h-1)(2h-3)(2h-5)\cdots(5)(3)(1).$

Notice that

$$2^{h-1}(h-1)! = (2(h-1))(2(h-2))(2(h-3))\cdots(2(3))(2(2))(2(1))$$

= (2h-2)(2h-4)(2h-6)\cdots(6)(4)(2).

Therefore,

$$g(2h) = (2h-1)(2h-3)(2h-5)\cdots(5)(3)g(1)$$

= $(2h-1)(2h-3)(2h-5)\cdots(5)(3)(1)$
= $\frac{(2h-1)(2h-2)(2h-3)(2h-4)\cdots(4)(3)(2)(1)}{(2h-2)(2h-4)\cdots(4)(2)}$
= $\frac{(2h-1)!}{2^{h-1}(h-1)!}$, as claimed.

Theorem 5.1.E

Theorem 5.1.E. There number of different 1-factors in $K_{n,n}$ minus a 1-factor is

$$n!\left(\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-\cdots+\frac{(-1)^{n-1}}{(n-1)!}+\frac{(-1)^n}{n!}\right).$$

Proof. Let D_n denote the number of 1-factors in $K_{n,n}$ minus a 1-factor (that is, D_n is the number of derangements of n objects). Now $D_1 = 0$ and $D_2 = 1$. Here, we indicate the edges of the 1-factor that has been removed as dotted lines.

Theorem 5.1.E

Theorem 5.1.E. There number of different 1-factors in $K_{n,n}$ minus a 1-factor is

$$n!\left(\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-\cdots+\frac{(-1)^{n-1}}{(n-1)!}+\frac{(-1)^n}{n!}\right).$$

Proof. Let D_n denote the number of 1-factors in $K_{n,n}$ minus a 1-factor (that is, D_n is the number of derangements of n objects). Now $D_1 = 0$ and $D_2 = 1$. Here, we indicate the edges of the 1-factor that has been removed as dotted lines.

We label the vertices in one partite set as 1, 2, ..., n and those in the other partite set 1', 2', ..., n', such that the edges of the removed 1-factor are i i' for $i \in \{1, 2, ..., n\}$.

Theorem 5.1.E

Theorem 5.1.E. There number of different 1-factors in $K_{n,n}$ minus a 1-factor is

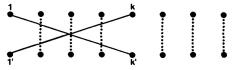
$$n!\left(\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-\cdots+\frac{(-1)^{n-1}}{(n-1)!}+\frac{(-1)^n}{n!}\right).$$

Proof. Let D_n denote the number of 1-factors in $K_{n,n}$ minus a 1-factor (that is, D_n is the number of derangements of n objects). Now $D_1 = 0$ and $D_2 = 1$. Here, we indicate the edges of the 1-factor that has been removed as dotted lines.

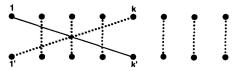
We label the vertices in one partite set as 1, 2, ..., n and those in the other partite set 1', 2', ..., n', such that the edges of the removed 1-factor are *i* i' for $i \in \{1, 2, ..., n\}$.

Theorem 5.1.E (continued 1)

Proof (continued). We derive an expression for D_n in terms of D_{n-1} and D_{n-2} . First, we count the number of 1-factors that contain the edges 1 k' and k 1', where $n \neq 1$ and $k' \neq 1'$.



There are D_{n-2} such 1-factors for each value of $k \neq 1$ and k can assume any of the n-1 values $2, 3, \ldots, n$.



Next we count the number of 1-factors that contain edge 1 k' but not the edge k 1'. There are D_{n-1} such 1-factors for each k. Again, k can be any of the n-1 values $2, 3, \ldots, n$, so there are $(n-1)D_{n-1}$ such 1-factors.

Theorem 5.1.E (continued 2)

Theorem 5.1.E. There number of different 1-factors in $K_{n,n}$ minus a 1-factor is

$$n!\left(\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-\cdots+\frac{(-1)^{n-1}}{(n-1)!}+\frac{(-1)^n}{n!}\right)$$

Proof (continued). We now have the recurrence relation $D_n = (n-1)(D_{n-1} + D_{n-2})$. This can be rewritten as $D_n - nD_{n-1} = -(D_{n-1} - (n-1)D_{n-2})$. Replacing *n* with n-1 we then have $D_{n-1} - (n-1)D_{n-2} = -(D_{n-2} - (n-2)D_{n-3})$, which substitutes into the previous equation to give $D_n - nD_{n-1} = (-1)^2(D_{n-2} - (n-2)D_{n-3})$. Iterating this process we get $D_n - nD_{n-1} = (-1)^{n-2}(D_2 - 2D_1) = (-1)^n((1) - 2(0)) = (-1)^n$ (recall that $D_1 = 0$ and $D_2 = 1$). Rearranging gives $D_n = nD_{n-1} + (-1)^n$ or

$$\frac{D_n}{n!} = \frac{D_{n-1}}{(n-1)!} + \frac{(-1)^n}{n!}$$

Theorem 5.1.E (continued 3)

Proof (continued). Writing out $\frac{D_n}{n!} = \frac{D_{n-1}}{(n-1)!} + \frac{(-1)^n}{n!}$ for $n = 2, 3, \dots, n-1, n$ gives

$$\begin{array}{rcl} \frac{D_2}{2!} & = & \frac{D_1}{1!} + \frac{1}{2!} \\ \frac{D_3}{3!} & = & \frac{D_2}{2!} - \frac{1}{3!} \\ \frac{D_4}{4!} & = & \frac{D_3}{3!} + \frac{1}{4!} \end{array}$$

5

$$\frac{D_{n-1}}{(n-1)!} = \frac{D_{n-2}}{(n-2)!} + \frac{(-1)^{n-1}}{(n-1)!}$$
$$\frac{D_n}{n!} = \frac{D_{n-1}}{(n-1)!} + \frac{(-1)^n}{n!}$$

Summing these equations and simplifying (noticing that $D_1 = 0$) gives ...

Theorem 5.1.E (continued 4)

Theorem 5.1.E. There number of different 1-factors in $K_{n,n}$ minus a 1-factor is

$$n!\left(\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-\cdots+\frac{(-1)^{n-1}}{(n-1)!}+\frac{(-1)^n}{n!}\right).$$

Proof (continued). ...

$$\frac{D_n}{n!} = \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \dots + \frac{(-1)^{n-1}}{(n-1)!} + \frac{(-1)^n}{n!},$$

or

$$D_n = n! \left(\frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \dots + \frac{(-1)^{n-1}}{(n-1)!} + \frac{(-1)^n}{n!} \right),$$

as claimed.