Introduction to Graph Theory

Chapter 5. Counting

5.1. Counting 1-Factors—Proofs of Theorems

Pearls in Graph Theoru
A Comprichensive Introdiction Nora Hartsfield Gerhard Ringel

Table of contents

(1) Theorem 5.1.A
(2) Theorem 5.1.B
(3) Theorem 5.1.C
(4) Theorem 5.1.D
(5) Theorem 5.1.E

Theorem 5.1.A

Theorem 5.1.A. There are n ! 1 -factors in $K_{n, n}$.

Proof. Color the vertices in one partite set red and the vertices in the other partite set blue. Also number the red vertices $1,2, \ldots, n$. First red vertex 1 will be one end of some edge of the 1 -factor and the other end will be a blue vertex. There are n choices for the blue vertex and so n choices for the edge containing red vertex 1 . Next, red vertex 2 will be one end of some edge in the 1 -factor and the other end will be a blue vertex, but not the same blue vertex that was previously used. So there are $n-1$ choices for the blue vertex and so $n-1$ choices for the edge containing red vertex 2.

Theorem 5.1.A

Theorem 5.1.A. There are n ! 1-factors in $K_{n, n}$.
Proof. Color the vertices in one partite set red and the vertices in the other partite set blue. Also number the red vertices $1,2, \ldots, n$. First red vertex 1 will be one end of some edge of the 1 -factor and the other end will be a blue vertex. There are n choices for the blue vertex and so n choices for the edge containing red vertex 1 . Next, red vertex 2 will be one end of some edge in the 1 -factor and the other end will be a blue vertex, but not the same blue vertex that was previously used. So there are $n-1$ choices for the blue vertex and so $n-1$ choices for the edge containing red vertex 2 . Similarly, red vertex k (where $2 \leq k \leq n$) will be one end of some edge in the 1-factor and the other end will be a blue vertex, but not one used in the edges containing the first $k-1$ red vertices.

Theorem 5.1.A

Theorem 5.1.A. There are n ! 1-factors in $K_{n, n}$.
Proof. Color the vertices in one partite set red and the vertices in the other partite set blue. Also number the red vertices $1,2, \ldots, n$. First red vertex 1 will be one end of some edge of the 1 -factor and the other end will be a blue vertex. There are n choices for the blue vertex and so n choices for the edge containing red vertex 1 . Next, red vertex 2 will be one end of some edge in the 1 -factor and the other end will be a blue vertex, but not the same blue vertex that was previously used. So there are $n-1$ choices for the blue vertex and so $n-1$ choices for the edge containing red vertex 2 . Similarly, red vertex k (where $2 \leq k \leq n$) will be one end of some edge in the 1 -factor and the other end will be a blue vertex, but not one used in the edges containing the first $k-1$ red vertices.

Theorem 5.1.A (continued)

Theorem 5.1.A. There are $n!1$-factors in $K_{n, n}$.

Proof (continued). So there are $n-(k-1)=n+1-k$ choices for the blue vertex and so $n+1-k$ choices for the edge containing red vertex k. By the Fundamental Counting Principle, the number of possible 1-factors is

$$
\prod_{k=1}^{n}(n+1-k)=(n)(n-1)(n-2) \cdots(3)(2)(1)=n!
$$

as claimed.

Note. We could also approach this with a proof based on mathematical induction.

Theorem 5.1.A (continued)

Theorem 5.1.A. There are n ! 1 -factors in $K_{n, n}$.

Proof (continued). So there are $n-(k-1)=n+1-k$ choices for the blue vertex and so $n+1-k$ choices for the edge containing red vertex k. By the Fundamental Counting Principle, the number of possible 1-factors is

$$
\prod_{k=1}^{n}(n+1-k)=(n)(n-1)(n-2) \cdots(3)(2)(1)=n!
$$

as claimed.

Note. We could also approach this with a proof based on mathematical induction.

Theorem 5.1.B

Theorem 5.1.B. There are $\frac{n!}{2(n-k-1)!}$ different subgraphs of K_{n} isomorphic to path P_{k}.

Proof. Recall that P_{k} is a path of length k, of it has k edges and $k+1$ vertices. If $k \geq n$ then there are no such paths in K_{n}, so we suppose that $k<n$. Notice that every path P_{k} in K_{n} is determined by an ordered $(k+1)$-tuple of distinct vertices of K_{n} (but there is not a one-to-one correspondence between paths and ($k+1$)-tuples). The $(k+1)$-tuple can start at any vertex of K_{n}, so there are n choices for the first entry of the $(k+1)$-tuple. Next, there are $n-1$ choices for the second entry of the $(k+1)$-tuple, since the vertices must be distinct. Similarly, for the i th entry in the $(k+1)$-tuple (where $2 \leq i \leq k+1$), there are $n-(i-1)$ choices of a vertex.

Theorem 5.1.B

Theorem 5.1.B. There are $\frac{n!}{2(n-k-1)!}$ different subgraphs of K_{n} isomorphic to path P_{k}.

Proof. Recall that P_{k} is a path of length k, of it has k edges and $k+1$ vertices. If $k \geq n$ then there are no such paths in K_{n}, so we suppose that $k<n$. Notice that every path P_{k} in K_{n} is determined by an ordered $(k+1)$-tuple of distinct vertices of K_{n} (but there is not a one-to-one correspondence between paths and ($k+1$)-tuples). The $(k+1)$-tuple can start at any vertex of K_{n}, so there are n choices for the first entry of the $(k+1)$-tuple. Next, there are $n-1$ choices for the second entry of the $(k+1)$-tuple, since the vertices must be distinct. Similarly, for the i th entry in the $(k+1)$-tuple (where $2 \leq i \leq k+1)$, there are $n-(i-1)$ choices of a vertex.

Theorem 5.1.B (continued)

Theorem 5.1.B. There are $\frac{n!}{2(n-k-1)!}$ different subgraphs of K_{n} isomorphic to path P_{k}.

Proof (continued). By the Fundamental Counting Principle, the number of possible $(k+1)$-tuples of distinct vertices of K_{n} is

$$
\begin{aligned}
& \prod_{i}=1^{k+1}(n-(i-1))=\prod_{i=1}^{k+1}(n+1)-i \\
= & n(n-1)(n-2) \cdots(n-k)=\frac{n!}{(n-k-1)!}
\end{aligned}
$$

For each path P_{k} of K_{n}, there are two $(k+1)$-tuples of distinct vertices of K_{n} (each has the same vertices, just in opposite orders). So the number paths P_{k} in K_{n} is half the number of such $(k+1)$-tuples, namely $\frac{n!}{2(n-k-1)!}$ as claimed.

Theorem 5.1.C

Theorem 5.1.C. There are $n\binom{n-1}{3}$ different subgraphs of K_{n} isomorphic to $K_{1,3}$.

Proof. For each subgraph of K_{n} isomorphic to $K_{1,3}$, we first choose the vertex of degree three and then choose the other three vertices. There are n choices for the degree three vertex and, since the degree one vertices can be any vertex except the one already chosen, there are $\binom{n-1}{3}$ choices for the degree one vertices. By the Fundamental Counting Principle, the number of subgraphs of K_{n} isomorphic to $K_{1,3}$ is $n\binom{n-1}{3}$, as claimed.

Theorem 5.1.C

Theorem 5.1.C. There are $n\binom{n-1}{3}$ different subgraphs of K_{n} isomorphic to $K_{1,3}$.

Proof. For each subgraph of K_{n} isomorphic to $K_{1,3}$, we first choose the vertex of degree three and then choose the other three vertices. There are n choices for the degree three vertex and, since the degree one vertices can be any vertex except the one already chosen, there are $\binom{n-1}{3}$ choices for the degree one vertices. By the Fundamental Counting Principle, the number of subgraphs of K_{n} isomorphic to $K_{1,3}$ is $n\binom{n-1}{3}$, as claimed.

Theorem 5.1.D

Theorem 5.1.D. There are $\frac{(2 h-1)!}{2^{h-1}(h-1)!}$ different 1-factors in $K_{2 h}$.
Proof. Let the number of 1 -factors in $K_{2 h}$ be denoted by $g(2 h)$. Let x be an arbitrary vertex of $K_{2 h}$. Choose an edge incident to x. Since x is in the complete graph $K_{2 h}$, then its degree is $2 h-1$ so that there are $2 h-1$ choices for the edge incident to x. Let the other end of the chosen edge be vertex y. We now "disregard" vertices x and y and all edges incident to them, thus modifying $K_{2 h}$ to become $K_{2 h-2}$ (this process is called edge deletion; see my online notes for graduate Graph Theory 1 on Section 2.1. Subgraphs and Supergraphs).

Theorem 5.1.D

Theorem 5.1.D. There are $\frac{(2 h-1)!}{2^{h-1}(h-1)!}$ different 1-factors in $K_{2 h}$.
Proof. Let the number of 1 -factors in $K_{2 h}$ be denoted by $g(2 h)$. Let x be an arbitrary vertex of $K_{2 h}$. Choose an edge incident to x. Since x is in the complete graph $K_{2 h}$, then its degree is $2 h-1$ so that there are $2 h-1$ choices for the edge incident to x. Let the other end of the chosen edge be vertex y. We now "disregard" vertices x and y and all edges incident to them, thus modifying $K_{2 h}$ to become $K_{2 h-2}$ (this process is called edge deletion; see my online notes for graduate Graph Theory 1 on Section 2.1. Subgraphs and Supergraphs). Therefore (by the Fundamental Counting Principle) we have the number of 1 -factors in $K_{2 h}$ is $2 h-1$ times the number of 1 -factors in $K_{2 h-1}$; that is, $g(2 h)=(2 h-1) g(2 h-2)$. Similarly, $g(2 h-2)=(2 h-3) g(2 h-4)$, so that $g(2 h)=(2 h-1)(2 h-3) g(2 h-4)$.

Theorem 5.1.D

Theorem 5.1.D. There are $\frac{(2 h-1)!}{2^{h-1}(h-1)!}$ different 1-factors in $K_{2 h}$.
Proof. Let the number of 1 -factors in $K_{2 h}$ be denoted by $g(2 h)$. Let x be an arbitrary vertex of $K_{2 h}$. Choose an edge incident to x. Since x is in the complete graph $K_{2 h}$, then its degree is $2 h-1$ so that there are $2 h-1$ choices for the edge incident to x. Let the other end of the chosen edge be vertex y. We now "disregard" vertices x and y and all edges incident to them, thus modifying $K_{2 h}$ to become $K_{2 h-2}$ (this process is called edge deletion; see my online notes for graduate Graph Theory 1 on Section 2.1. Subgraphs and Supergraphs). Therefore (by the Fundamental Counting Principle) we have the number of 1 -factors in $K_{2 h}$ is $2 h-1$ times the number of 1-factors in $K_{2 h-1}$; that is, $g(2 h)=(2 h-1) g(2 h-2)$. Similarly, $g(2 h-2)=(2 h-3) g(2 h-4)$, so that $g(2 h)=(2 h-1)(2 h-3) g(2 h-4)$.

Theorem 5.1.D (continued)

Proof. Iterating this process we have

$$
\begin{aligned}
g(2 h) & =(2 h-1)(2 h-3)(2 h-5) \cdots(5)(3) g(1) \\
& =(2 h-1)(2 h-3)(2 h-5) \cdots(5)(3)(1) .
\end{aligned}
$$

Notice that

$$
\begin{aligned}
2^{h-1}(h-1)! & =(2(h-1))(2(h-2))(2(h-3)) \cdots(2(3))(2(2))(2(1)) \\
& =(2 h-2)(2 h-4)(2 h-6) \cdots(6)(4)(2) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
g(2 h) & =(2 h-1)(2 h-3)(2 h-5) \cdots(5)(3) g(1) \\
& =(2 h-1)(2 h-3)(2 h-5) \cdots(5)(3)(1) \\
& =\frac{(2 h-1)(2 h-2)(2 h-3)(2 h-4) \cdots(4)(3)(2)(1)}{(2 h-2)(2 h-4) \cdots(4)(2)} \\
& =\frac{(2 h-1)!}{2^{h-1}(h-1)!}, \text { as claimed. }
\end{aligned}
$$

Theorem 5.1.E

Theorem 5.1.E. There number of different 1 -factors in $K_{n, n}$ minus a 1 -factor is

$$
n!\left(\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-\cdots+\frac{(-1)^{n-1}}{(n-1)!}+\frac{(-1)^{n}}{n!}\right)
$$

Proof. Let D_{n} denote the number of 1-factors in $K_{n, n}$ minus a 1-factor (that is, D_{n} is the number of derangements of n objects). Now $D_{1}=0$ and $D_{2}=1$. Here, we indicate the edges of the 1 -factor that has been removed as dotted lines.

Theorem 5.1.E

Theorem 5.1.E. There number of different 1-factors in $K_{n, n}$ minus a 1 -factor is

$$
n!\left(\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-\cdots+\frac{(-1)^{n-1}}{(n-1)!}+\frac{(-1)^{n}}{n!}\right)
$$

Proof. Let D_{n} denote the number of 1-factors in $K_{n, n}$ minus a 1-factor (that is, D_{n} is the number of derangements of n objects). Now $D_{1}=0$ and $D_{2}=1$. Here, we indicate the edges of the 1 -factor that has been removed as dotted lines.

We label the vertices in one partite set as $1,2, \ldots, n$ and those in the other partite set $1^{\prime}, 2^{\prime}, \ldots, n^{\prime}$, such that the edges of the removed 1 -factor are $i i^{\prime}$ for $i \in\{1,2, \ldots, n\}$.

Theorem 5.1.E

Theorem 5.1.E. There number of different 1-factors in $K_{n, n}$ minus a 1 -factor is

$$
n!\left(\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-\cdots+\frac{(-1)^{n-1}}{(n-1)!}+\frac{(-1)^{n}}{n!}\right)
$$

Proof. Let D_{n} denote the number of 1-factors in $K_{n, n}$ minus a 1-factor (that is, D_{n} is the number of derangements of n objects). Now $D_{1}=0$ and $D_{2}=1$. Here, we indicate the edges of the 1 -factor that has been removed as dotted lines.

We label the vertices in one partite set as $1,2, \ldots, n$ and those in the other partite set $1^{\prime}, 2^{\prime}, \ldots, n^{\prime}$, such that the edges of the removed 1 -factor are $i i^{\prime}$ for $i \in\{1,2, \ldots, n\}$.

Theorem 5.1.E (continued 1)

Proof (continued). We derive an expression for D_{n} in terms of D_{n-1} and D_{n-2}. First, we count the number of 1 -factors that contain the edges $1 k^{\prime}$ and $k 1^{\prime}$, where $n \neq 1$ and $k^{\prime} \neq 1^{\prime}$.

There are D_{n-2} such 1-factors for each value of $k \neq 1$ and k can assume any of the $n-1$ values $2,3, \ldots, n$.

Next we count the number of 1-factors that contain edge $1 k^{\prime}$ but not the edge $k 1^{\prime}$. There are D_{n-1} such 1 -factors for each k. Again, k can be any of the $n-1$ values $2,3, \ldots, n$, so there are $(n-1) D_{n-1}$ such 1 -factors.

Theorem 5.1.E (continued 2)

Theorem 5.1.E. There number of different 1-factors in $K_{n, n}$ minus a 1 -factor is

$$
n!\left(\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-\cdots+\frac{(-1)^{n-1}}{(n-1)!}+\frac{(-1)^{n}}{n!}\right)
$$

Proof (continued). We now have the recurrence relation $D_{n}=(n-1)\left(D_{n-1}+D_{n-2}\right)$. This can be rewritten as $D_{n}-n D_{n-1}=-\left(D_{n-1}-(n-1) D_{n-2}\right)$. Replacing n with $n-1$ we then have $D_{n-1}-(n-1) D_{n-2}=-\left(D_{n-2}-(n-2) D_{n-3}\right)$, which substitutes into the previous equation to give $D_{n}-n D_{n-1}=(-1)^{2}\left(D_{n-2}-(n-2) D_{n-3}\right)$. Iterating this process we get $D_{n}-n D_{n-1}=(-1)^{n-2}\left(D_{2}-2 D_{1}\right)=(-1)^{n}((1)-2(0))=(-1)^{n}($ recall that $D_{1}=0$ and $D_{2}=1$). Rearranging gives $D_{n}=n D_{n-1}+(-1)^{n}$ or

$$
\frac{D_{n}}{n!}=\frac{D_{n-1}}{(n-1)!}+\frac{(-1)^{n}}{n!} .
$$

Theorem 5.1.E (continued 3)

Proof (continued). Writing out $\frac{D_{n}}{n!}=\frac{D_{n-1}}{(n-1)!}+\frac{(-1)^{n}}{n!}$ for $n=2,3, \ldots, n-1, n$ gives

$$
\begin{aligned}
\frac{D_{2}}{2!} & =\frac{D_{1}}{1!}+\frac{1}{2!} \\
\frac{D_{3}}{3!} & =\frac{D_{2}}{2!}-\frac{1}{3!} \\
\frac{D_{4}}{4!} & =\frac{D_{3}}{3!}+\frac{1}{4!} \\
& \vdots \\
\frac{D_{n-1}}{(n-1)!} & =\frac{D_{n-2}}{(n-2)!}+\frac{(-1)^{n-1}}{(n-1)!} \\
\frac{D_{n}}{n!} & =\frac{D_{n-1}}{(n-1)!}+\frac{(-1)^{n}}{n!}
\end{aligned}
$$

Summing these equations and simplifying (noticing that $D_{1}=0$) gives \ldots

Theorem 5.1.E (continued 4)

Theorem 5.1.E. There number of different 1-factors in $K_{n, n}$ minus a 1 -factor is

$$
n!\left(\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-\cdots+\frac{(-1)^{n-1}}{(n-1)!}+\frac{(-1)^{n}}{n!}\right)
$$

Proof (continued). ...

$$
\frac{D_{n}}{n!}=\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-\cdots+\frac{(-1)^{n-1}}{(n-1)!}+\frac{(-1)^{n}}{n!}
$$

or

$$
D_{n}=n!\left(\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-\cdots+\frac{(-1)^{n-1}}{(n-1)!}+\frac{(-1)^{n}}{n!}\right)
$$

as claimed.

