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Chapter 5. Counting
5.1. Counting 1-Factors—Proofs of Theorems

() Introduction to Graph Theory January 7, 2023 1 / 15



Table of contents

1 Theorem 5.1.A

2 Theorem 5.1.B

3 Theorem 5.1.C

4 Theorem 5.1.D

5 Theorem 5.1.E

() Introduction to Graph Theory January 7, 2023 2 / 15



Theorem 5.1.A

Theorem 5.1.A

Theorem 5.1.A. There are n! 1-factors in Kn,n.

Proof. Color the vertices in one partite set red and the vertices in the
other partite set blue. Also number the red vertices 1, 2, . . . , n. First red
vertex 1 will be one end of some edge of the 1-factor and the other end
will be a blue vertex. There are n choices for the blue vertex and so n
choices for the edge containing red vertex 1. Next, red vertex 2 will be one
end of some edge in the 1-factor and the other end will be a blue vertex,
but not the same blue vertex that was previously used. So there are n − 1
choices for the blue vertex and so n− 1 choices for the edge containing red
vertex 2.

Similarly, red vertex k (where 2 ≤ k ≤ n) will be one end of
some edge in the 1-factor and the other end will be a blue vertex, but not
one used in the edges containing the first k − 1 red vertices.
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Theorem 5.1.A

Theorem 5.1.A (continued)

Theorem 5.1.A. There are n! 1-factors in Kn,n.

Proof (continued). So there are n − (k − 1) = n + 1− k choices for the
blue vertex and so n + 1− k choices for the edge containing red vertex k.
By the Fundamental Counting Principle, the number of possible 1-factors
is

n∏
k=1

(n + 1− k) = (n)(n − 1)(n − 2) · · · (3)(2)(1) = n!,

as claimed.

Note. We could also approach this with a proof based on mathematical
induction.
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Theorem 5.1.A (continued)
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Theorem 5.1.B

Theorem 5.1.B

Theorem 5.1.B. There are
n!

2(n − k − 1)!
different subgraphs of Kn

isomorphic to path Pk .

Proof. Recall that Pk is a path of length k, of it has k edges and k + 1
vertices. If k ≥ n then there are no such paths in Kn, so we suppose that
k < n. Notice that every path Pk in Kn is determined by an ordered
(k + 1)-tuple of distinct vertices of Kn (but there is not a one-to-one
correspondence between paths and (k + 1)-tuples). The (k + 1)-tuple can
start at any vertex of Kn, so there are n choices for the first entry of the
(k + 1)-tuple. Next, there are n − 1 choices for the second entry of the
(k + 1)-tuple, since the vertices must be distinct. Similarly, for the ith
entry in the (k + 1)-tuple (where 2 ≤ i ≤ k + 1), there are n − (i − 1)
choices of a vertex.
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Theorem 5.1.B

Theorem 5.1.B (continued)

Theorem 5.1.B. There are
n!

2(n − k − 1)!
different subgraphs of Kn

isomorphic to path Pk .

Proof (continued). By the Fundamental Counting Principle, the number
of possible (k + 1)-tuples of distinct vertices of Kn is

∏
i = 1k+1(n − (i − 1)) =

k+1∏
i=1

(n + 1)− i

= n(n − 1)(n − 2) · · · (n − k) =
n!

(n − k − 1)!
.

For each path Pk of Kn, there are two (k + 1)-tuples of distinct vertices of
Kn (each has the same vertices, just in opposite orders). So the number
paths Pk in Kn is half the number of such (k + 1)-tuples, namely

n!

2(n − k − 1)!
as claimed.
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Theorem 5.1.C

Theorem 5.1.C

Theorem 5.1.C. There are n

(
n − 1

3

)
different subgraphs of Kn

isomorphic to K1,3.

Proof. For each subgraph of Kn isomorphic to K1,3, we first choose the
vertex of degree three and then choose the other three vertices. There are
n choices for the degree three vertex and, since the degree one vertices can

be any vertex except the one already chosen, there are

(
n − 1

3

)
choices

for the degree one vertices. By the Fundamental Counting Principle, the

number of subgraphs of Kn isomorphic to K1,3 is n

(
n − 1

3

)
, as

claimed.
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Theorem 5.1.D

Theorem 5.1.D

Theorem 5.1.D. There are
(2h − 1)!

2h−1(h − 1)!
different 1-factors in K2h.

Proof. Let the number of 1-factors in K2h be denoted by g(2h). Let x be
an arbitrary vertex of K2h. Choose an edge incident to x . Since x is in the
complete graph K2h, then its degree is 2h − 1 so that there are 2h − 1
choices for the edge incident to x . Let the other end of the chosen edge
be vertex y . We now “disregard” vertices x and y and all edges incident
to them, thus modifying K2h to become K2h−2 (this process is called edge
deletion; see my online notes for graduate Graph Theory 1 on Section 2.1.
Subgraphs and Supergraphs).

Therefore (by the Fundamental Counting
Principle) we have the number of 1-factors in K2h is 2h − 1 times the
number of 1-factors in K2h−1; that is, g(2h) = (2h − 1)g(2h − 2).
Similarly, g(2h − 2) = (2h − 3)g(2h − 4), so that
g(2h) = (2h − 1)(2h − 3)g(2h − 4).
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Theorem 5.1.D

Theorem 5.1.D (continued)

Proof. Iterating this process we have

g(2h) = (2h − 1)(2h − 3)(2h − 5) · · · (5)(3)g(1)

= (2h − 1)(2h − 3)(2h − 5) · · · (5)(3)(1).

Notice that

2h−1(h − 1)! = (2(h − 1))(2(h − 2))(2(h − 3)) · · · (2(3))(2(2))(2(1))

= (2h − 2)(2h − 4)(2h − 6) · · · (6)(4)(2).

Therefore,

g(2h) = (2h − 1)(2h − 3)(2h − 5) · · · (5)(3)g(1)

= (2h − 1)(2h − 3)(2h − 5) · · · (5)(3)(1)

=
(2h − 1)(2h − 2)(2h − 3)(2h − 4) · · · (4)(3)(2)(1)

(2h − 2)(2h − 4) · · · (4)(2)

=
(2h − 1)!

2h−1(h − 1)!
, as claimed.
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Theorem 5.1.E

Theorem 5.1.E

Theorem 5.1.E. There number of different 1-factors in Kn,n minus a
1-factor is

n!

(
1

2!
− 1

3!
+

1

4!
− · · ·+ (−1)n−1

(n − 1)!
+

(−1)n

n!

)
.

Proof. Let Dn denote the number of 1-factors in Kn,n minus a 1-factor
(that is, Dn is the number of derangements of n objects). Now D1 = 0
and D2 = 1. Here, we indicate the edges of the 1-factor that has been
removed as dotted lines.

We label the vertices in one partite set as 1, 2, . . . , n and those in the
other partite set 1′, 2′, . . . , n′, such that the edges of the removed 1-factor
are i i ′ for i ∈ {1, 2, . . . , n}.
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Theorem 5.1.E

Theorem 5.1.E (continued 1)

Proof (continued). We derive an expression for Dn in terms of Dn−1 and
Dn−2. First, we count the number of 1-factors that contain the edges 1 k ′

and k 1′, where n 6= 1 and k ′ 6= 1′.

There are Dn−2 such 1-factors for each value of k 6= 1 and k can assume
any of the n − 1 values 2, 3, . . . , n.

Next we count the number of 1-factors that contain edge 1 k ′ but not the
edge k 1′. There are Dn−1 such 1-factors for each k. Again, k can be any
of the n − 1 values 2, 3, . . . , n, so there are (n − 1)Dn−1 such 1-factors.
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Theorem 5.1.E

Theorem 5.1.E (continued 2)

Theorem 5.1.E. There number of different 1-factors in Kn,n minus a
1-factor is

n!

(
1

2!
− 1

3!
+

1

4!
− · · ·+ (−1)n−1

(n − 1)!
+

(−1)n

n!

)
.

Proof (continued). We now have the recurrence relation
Dn = (n − 1)(Dn−1 + Dn−2). This can be rewritten as
Dn − nDn−1 = −(Dn−1 − (n − 1)Dn−2). Replacing n with n − 1 we then
have Dn−1 − (n − 1)Dn−2 = −(Dn−2 − (n − 2)Dn−3), which substitutes
into the previous equation to give
Dn − nDn−1 = (−1)2(Dn−2 − (n − 2)Dn−3). Iterating this process we get
Dn − nDn−1 = (−1)n−2(D2 − 2D1) = (−1)n((1)− 2(0)) = (−1)n (recall
that D1 = 0 and D2 = 1). Rearranging gives Dn = nDn−1 + (−1)n or

Dn

n!
=

Dn−1

(n − 1)!
+

(−1)n

n!
.
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Theorem 5.1.E

Theorem 5.1.E (continued 3)

Proof (continued). Writing out
Dn

n!
=

Dn−1

(n − 1)!
+

(−1)n

n!
for

n = 2, 3, . . . , n − 1, n gives

D2

2!
=

D1

1!
+

1

2!
D3

3!
=

D2

2!
− 1

3!
D4

4!
=

D3

3!
+

1

4!
...

Dn−1

(n − 1)!
=

Dn−2

(n − 2)!
+

(−1)n−1

(n − 1)!

Dn

n!
=

Dn−1

(n − 1)!
+

(−1)n

n!

Summing these equations and simplifying (noticing that D1 = 0) gives . . .
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Theorem 5.1.E

Theorem 5.1.E (continued 4)

Theorem 5.1.E. There number of different 1-factors in Kn,n minus a
1-factor is

n!

(
1

2!
− 1

3!
+

1

4!
− · · ·+ (−1)n−1

(n − 1)!
+

(−1)n

n!

)
.

Proof (continued). . . .

Dn

n!
=

1

2!
− 1

3!
+

1

4!
− · · ·+ (−1)n−1

(n − 1)!
+

(−1)n

n!
,

or

Dn = n!

(
1

2!
− 1

3!
+

1

4!
− · · ·+ (−1)n−1

(n − 1)!
+

(−1)n

n!

)
,

as claimed.
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