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Chapter 6. Labeling Graphs
6.1. Magic Graphs and Graceful Trees—Proofs of Theorems
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Theorem 6.1.2

Theorem 6.1.2

Theorem 6.1.2. If a bipartite graph G is decomposable into two
Hamilton cycles, then G is magic.

Proof. Since G is bipartite then the length of the Hamilton cycle if even,
say 2n (notice that this implies that each partite set must be size n). The
number of edges in G is then q = 2(2n) = 4n. Choose an arbitrary vertex
a and label the edges of the first Hamilton cycle starting at a by
4n − 1, 1, 4n − 3, 3, 4n − 5, 5, . . . , 4n − (2k − 1), 2k − 1, . . . 2n + 1, 2n − 1
(all odd numbers; notice that 1 ≤ k ≤ n). Then label the edges of the
second Hamilton cycle, starting at a, by
2, 4n, 4, 4n − 2, 6, 4n − 4, . . . , 2k, 4n + 2− 2k, . . . , 2n, 2n + 2 (all even
numbers; notice that 1 ≤ k ≤ n). This is illustrated for n = 5 in Figure
6.1.7 of the notes.
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Theorem 6.1.2

Theorem 6.1.2 (continued)

Theorem 6.1.2. If a bipartite graph G is decomposable into two
Hamilton cycles, then G is magic.

Proof (continued). Since G is bipartite, the vertices can be colored red
and blue with no two adjacent vertices of the same color. If a is blue, then
the sum of the odd-numbered edges at all the blue vertices except a is
4n − (2k − 1) + (2k − 1) = 4n − 2. The sum of the even-numbered edges
at all blue vertices except a is (4n + 2− 2k) + (2(k + 1)) = 4n + 4. The
sum of all edges at a is (4n − 1) + (2n − 1) + (2) + (2n + 2) = 8n + 2.
Therefore the sum of all edges at any blue vertex if
(4n − 2) + (4n + 4) = 8n + 2.

The sum of the odd-numbered edges at each red vertex is
(4n − (2k − 1)) + (2k − 1) = 4n. The sum of the even-numbered edges at
each red vertex is (2k) + (4n + 2− 2k)) = 4n + 2. Hence the sum of all
edges at any red vertex is 8n + 2. Therefore, the sum of all edges incident
to a any vertex of G is 8n + 2 and G is magic, as claimed.

() Introduction to Graph Theory January 4, 2023 4 / 5



Theorem 6.1.2

Theorem 6.1.2 (continued)

Theorem 6.1.2. If a bipartite graph G is decomposable into two
Hamilton cycles, then G is magic.

Proof (continued). Since G is bipartite, the vertices can be colored red
and blue with no two adjacent vertices of the same color. If a is blue, then
the sum of the odd-numbered edges at all the blue vertices except a is
4n − (2k − 1) + (2k − 1) = 4n − 2. The sum of the even-numbered edges
at all blue vertices except a is (4n + 2− 2k) + (2(k + 1)) = 4n + 4. The
sum of all edges at a is (4n − 1) + (2n − 1) + (2) + (2n + 2) = 8n + 2.
Therefore the sum of all edges at any blue vertex if
(4n − 2) + (4n + 4) = 8n + 2.

The sum of the odd-numbered edges at each red vertex is
(4n − (2k − 1)) + (2k − 1) = 4n. The sum of the even-numbered edges at
each red vertex is (2k) + (4n + 2− 2k)) = 4n + 2. Hence the sum of all
edges at any red vertex is 8n + 2. Therefore, the sum of all edges incident
to a any vertex of G is 8n + 2 and G is magic, as claimed.

() Introduction to Graph Theory January 4, 2023 4 / 5



Theorem 6.1.2

Theorem 6.1.2 (continued)
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Theorem 6.1.3

Theorem 6.1.3

Theorem 6.1.3. If a graph G is decomposable into two magic spanning
subgraphs G1 and G2 where G2 is regular, then G is magic.

Proof. Let q1 and q2 denote the number of edges of G1 and G2,
respectively. Consider a magic labeling of G1 (so the edge labels are
1, 2, . . . , q1) and a magic labeling of G2 (where the edge labels are
1, 2, . . . , q2). To each label of G2, add q2. Since G2 is regular, we have
added the same amount at each vertex. We now have the edges of G
labeled with the 1, 2, . . . , q1, q1 + 1, . . . , q1 + q2, and the sum of the labels
at each vertex is the same (namely, the sum at every vertex is what it is in
G1 plus what it is in G2 plus kq1 where k is the degree of each vertex of
regular graph G2). That is, G is magic, as claimed.

() Introduction to Graph Theory January 4, 2023 5 / 5



Theorem 6.1.3

Theorem 6.1.3

Theorem 6.1.3. If a graph G is decomposable into two magic spanning
subgraphs G1 and G2 where G2 is regular, then G is magic.

Proof. Let q1 and q2 denote the number of edges of G1 and G2,
respectively. Consider a magic labeling of G1 (so the edge labels are
1, 2, . . . , q1) and a magic labeling of G2 (where the edge labels are
1, 2, . . . , q2). To each label of G2, add q2. Since G2 is regular, we have
added the same amount at each vertex. We now have the edges of G
labeled with the 1, 2, . . . , q1, q1 + 1, . . . , q1 + q2, and the sum of the labels
at each vertex is the same (namely, the sum at every vertex is what it is in
G1 plus what it is in G2 plus kq1 where k is the degree of each vertex of
regular graph G2). That is, G is magic, as claimed.

() Introduction to Graph Theory January 4, 2023 5 / 5


	Theorem 6.1.2
	Theorem 6.1.3

