Introduction to Graph Theory

Chapter 6. Labeling Graphs

6.1. Magic Graphs and Graceful Trees—Proofs of Theorems

Pearls in
 Graph Theoru
 A Comprichensive introdiction Nora Hartsfield Gerhard Ringel

Table of contents

(1) Theorem 6.1.2
(2) Theorem 6.1.3

Theorem 6.1.2

Theorem 6.1.2. If a bipartite graph G is decomposable into two Hamilton cycles, then G is magic.

Proof. Since G is bipartite then the length of the Hamilton cycle if even, say $2 n$ (notice that this implies that each partite set must be size n). The number of edges in G is then $q=2(2 n)=4 n$. Choose an arbitrary vertex a and label the edges of the first Hamilton cycle starting at a by $4 n-1,1,4 n-3,3,4 n-5,5, \ldots, 4 n-(2 k-1), 2 k-1, \ldots 2 n+1,2 n-1$ (all odd numbers; notice that $1 \leq k \leq n$). Then label the edges of the second Hamilton cycle, starting at a, by
$2,4 n, 4,4 n-2,6,4 n-4, \ldots, 2 k, 4 n+2-2 k, \ldots, 2 n, 2 n+2$ (all even numbers; notice that $1 \leq k \leq n$). This is illustrated for $n=5$ in Figure 6.1.7 of the notes.

Theorem 6.1.2

Theorem 6.1.2. If a bipartite graph G is decomposable into two Hamilton cycles, then G is magic.

Proof. Since G is bipartite then the length of the Hamilton cycle if even, say $2 n$ (notice that this implies that each partite set must be size n). The number of edges in G is then $q=2(2 n)=4 n$. Choose an arbitrary vertex a and label the edges of the first Hamilton cycle starting at a by $4 n-1,1,4 n-3,3,4 n-5,5, \ldots, 4 n-(2 k-1), 2 k-1, \ldots 2 n+1,2 n-1$ (all odd numbers; notice that $1 \leq k \leq n$). Then label the edges of the second Hamilton cycle, starting at a, by
$2,4 n, 4,4 n-2,6,4 n-4, \ldots, 2 k, 4 n+2-2 k, \ldots, 2 n, 2 n+2$ (all even numbers; notice that $1 \leq k \leq n$). This is illustrated for $n=5$ in Figure 6.1.7 of the notes.

Theorem 6.1.2 (continued)

Theorem 6.1.2. If a bipartite graph G is decomposable into two Hamilton cycles, then G is magic.

Proof (continued). Since G is bipartite, the vertices can be colored red and blue with no two adjacent vertices of the same color. If a is blue, then the sum of the odd-numbered edges at all the blue vertices except a is $4 n-(2 k-1)+(2 k-1)=4 n-2$. The sum of the even-numbered edges at all blue vertices except a is $(4 n+2-2 k)+(2(k+1))=4 n+4$. The sum of all edges at a is $(4 n-1)+(2 n-1)+(2)+(2 n+2)=8 n+2$. Therefore the sum of all edges at any blue vertex if $(4 n-2)+(4 n+4)=8 n+2$.

Theorem 6.1.2 (continued)

Theorem 6.1.2. If a bipartite graph G is decomposable into two Hamilton cycles, then G is magic.

Proof (continued). Since G is bipartite, the vertices can be colored red and blue with no two adjacent vertices of the same color. If a is blue, then the sum of the odd-numbered edges at all the blue vertices except a is $4 n-(2 k-1)+(2 k-1)=4 n-2$. The sum of the even-numbered edges at all blue vertices except a is $(4 n+2-2 k)+(2(k+1))=4 n+4$. The sum of all edges at a is $(4 n-1)+(2 n-1)+(2)+(2 n+2)=8 n+2$.
Therefore the sum of all edges at any blue vertex if $(4 n-2)+(4 n+4)=8 n+2$.
The sum of the odd-numbered edges at each red vertex is $(4 n-(2 k-1))+(2 k-1)=4 n$. The sum of the even-numbered edges at each red vertex is $(2 k)+(4 n+2-2 k))=4 n+2$. Hence the sum of all edges at any red vertex is $8 n+2$. Therefore, the sum of all edges incident to a any vertex of G is $8 n+2$ and G is magic, as claimed.

Theorem 6.1.2 (continued)

Theorem 6.1.2. If a bipartite graph G is decomposable into two Hamilton cycles, then G is magic.

Proof (continued). Since G is bipartite, the vertices can be colored red and blue with no two adjacent vertices of the same color. If a is blue, then the sum of the odd-numbered edges at all the blue vertices except a is $4 n-(2 k-1)+(2 k-1)=4 n-2$. The sum of the even-numbered edges at all blue vertices except a is $(4 n+2-2 k)+(2(k+1))=4 n+4$. The sum of all edges at a is $(4 n-1)+(2 n-1)+(2)+(2 n+2)=8 n+2$.
Therefore the sum of all edges at any blue vertex if
$(4 n-2)+(4 n+4)=8 n+2$.
The sum of the odd-numbered edges at each red vertex is $(4 n-(2 k-1))+(2 k-1)=4 n$. The sum of the even-numbered edges at each red vertex is $(2 k)+(4 n+2-2 k))=4 n+2$. Hence the sum of all edges at any red vertex is $8 n+2$. Therefore, the sum of all edges incident to a any vertex of G is $8 n+2$ and G is magic, as claimed.

Theorem 6.1.3

Theorem 6.1.3. If a graph G is decomposable into two magic spanning subgraphs G_{1} and G_{2} where G_{2} is regular, then G is magic.

Proof. Let q_{1} and q_{2} denote the number of edges of G_{1} and G_{2}, respectively. Consider a magic labeling of G_{1} (so the edge labels are $1,2, \ldots, q_{1}$) and a magic labeling of G_{2} (where the edge labels are $\left.1,2, \ldots, q_{2}\right)$. To each label of G_{2}, add q_{2}. Since G_{2} is regular, we have added the same amount at each vertex. We now have the edges of G labeled with the $1,2, \ldots, q_{1}, q_{1}+1, \ldots, q_{1}+q_{2}$, and the sum of the labels at each vertex is the same (namely, the sum at every vertex is what it is in G_{1} plus what it is in G_{2} plus $k q_{1}$ where k is the degree of each vertex of regular graph G_{2}). That is, G is magic, as claimed.

Theorem 6.1.3

Theorem 6.1.3. If a graph G is decomposable into two magic spanning subgraphs G_{1} and G_{2} where G_{2} is regular, then G is magic.

Proof. Let q_{1} and q_{2} denote the number of edges of G_{1} and G_{2}, respectively. Consider a magic labeling of G_{1} (so the edge labels are $1,2, \ldots, q_{1}$) and a magic labeling of G_{2} (where the edge labels are $1,2, \ldots, q_{2}$). To each label of G_{2}, add q_{2}. Since G_{2} is regular, we have added the same amount at each vertex. We now have the edges of G labeled with the $1,2, \ldots, q_{1}, q_{1}+1, \ldots, q_{1}+q_{2}$, and the sum of the labels at each vertex is the same (namely, the sum at every vertex is what it is in G_{1} plus what it is in G_{2} plus $k q_{1}$ where k is the degree of each vertex of regular graph G_{2}). That is, G is magic, as claimed.

