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Chapter 8. Drawings of Graphs
8.1. Planar Graphs—Proofs of Theorems
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Theorem 8.1.1. Euler’s Polyhedral Formula

Theorem 8.1.1. Euler’s Polyhedral Formula

Theorem 8.1.1. Euler’s Polyhedral Formula.
If a plane drawing of a connected graph with p vertices and q edges has r
regions, then p − q + r = 2.

Proof. We give an induction argument on the number of cycles in the
graph. If connected graph G has no cycles, then G is a tree and, by
Theorem 1.3.2, p = q + 1, and in a plane drawing of G there is r = 1
region. So p − q + r = (q + 1)− q + (1) = 2, and the base case is
established.

For the induction hypothesis, suppose the formula holds for all plane
drawings of connected graphs with fewer than n cycles. Given a plane
drawing of a connected graph G with n cycles, p vertices, q edges, and r
regions, consider one cycle C of G . By the Jordan Curve Theorem, C
divides the plan into an inside and an outside. Let e be an edge of C .
Edge e is on the boundary of two distinct regions; one of these regions is
inside C and the other is outside C .
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Theorem 8.1.1. Euler’s Polyhedral Formula

Theorem 8.1.1. Euler’s Polyhedral Formula (continued)

Proof (continued).

Denote the region inside C as α and the region outside C as β. If we
remove edge e, then regions α and β merge into one region. The plane
drawing of G − e has p vertices, q − 1 edges, and r − 1 regions. Since
G − e has fewer than c cycles, then by the induction hypothesis we have
p − (q − 1) + (r − 1) = 2. This simplifies to p − q + r = 2, establishing
the induction step. Therefore, by Mathematical Induction, the formula
holds.
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Theorem 8.1.2

Theorem 8.1.2. If G is a maximal planar graph with p vertices and q
edges, where p ≥ 3, then q = 3p − 6.

Proof. Consider a plane drawing of G with r regions. Since G is a
maximal planar graph, then by Note 8.1.B each region is bounded by three
edges. In addition, every edge lies on two regions. We now count the
number h of pairs (t, e) where t is a triangle, and e is an edge of t. Since
each triangle contains three edges, and there are r triangles, then we have
r choices for t and for each such choice we have 3 choices for e. Hence
h = 3r .

Alternatively, since each edge is on the boundary of two triangles,
and there are q edges, then we have q choices for an edge and for each
such choice we have 2 choices for t. Hence h = 2q. Therefore,
h = 3r = 2q and by Euler’s Polyhedral Formula (Theorem 8.1.1),
p − q + r = 2, we have p − q + (2q/3) = 2 or p − q/3 = 2 or 3p − q = 6
or q = 3p − 6, as claimed.
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Theorem 8.1.4

Theorem 8.1.4

Theorem 8.1.4. The graph K5 is not planar.

Proof. ASSUME K5 is planar. By Theorem 8.1.3, we must have
q ≤ 3p − 6. But for K5, for which p = 5 and q = 10, this implies that
(10) ≤ 3(5)− 6 = 9, a CONTRADICTION. So the assumption that K5 is
planar is false, and hence K5 is not planar, as claimed.
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Theorem 8.1.5

Theorem 8.1.5

Theorem 8.1.5. If G is a planar bipartite graph with p vertices and q
edges, where p ≥ 3, then q ≤ 2p − 4.

Proof. Consider a plane drawing of G with r regions. Since G is bipartite,
then by Theorem 2.1.2 G contains no odd length cycles, so that each
region is bounded by [at least] four edges. In addition, every edge lies on
two regions. We now count the number h of pairs (s, e) where s is a
region, and e is an edge of s. Since each region contains at least four
edges, and there are r regions, then we have r choices for s and for each
such choice we have a least 4 choices for e. Hence h ≥ 4r .

Alternatively,
since each edge is on the boundary of two regions, and there are q edges,
then we have q choices for an edge and for each such choice we have 2
choices for s. Hence h = 2q. Therefore, h = 2q ≥ 4r or r ≤ q/2, and by
Euler’s Polyhedral Formula (Theorem 8.1.1), p − q + r = 2, we have
p = q − r + 2 or p = q − r + 2 ≥ q − (q/2) + 2 or p ≥ q/2 + 2 or
q ≤ 2p − 4, as claimed.
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Theorem 8.1.7

Theorem 8.1.7

Theorem 8.1.7. Every planar graph contains at least one vertex of degree
at most 5.

Proof. ASSUME not and that G is some planar graph with all vertices of
degree at least 6. Then in G , by Theorem 1.1.1 we have
2q =

∑
v∈V deg(v) ≥

∑
v∈V 6 = 6p, of q ≥ 3p. But then Theorem 8.1.3

requires that a planar graph satisfies q ≤ 3p − 6, a CONTRADICTION. So
the assumption that such a graph exists is false, and the claim holds.
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Theorem 8.1.8

Theorem 8.1.8

Theorem 8.1.8. Suppose G s a maximal planar graph with p vertices and
q edges, where p ≥ 4. Let pi denote the number of vertices of degree i .
Then

3p3 + 2p4 + p5 = 12 + p7 + 2p8 + 3p9 + 4p10 + · · · .

Proof. Notice that p is the sum of the pi ’s, and 2q is the sum of the
degrees of G by Theorem 1.1.1. That is,

p =
∞∑
i=3

pi and 2q =
∞∑
i=3

ipi

(these are “formal series,” since after some point all of the pi ’s are 0 and
the sum is in fact finite). Since G is a maximal planar graph, then by
Theorem 8.1.2, q = 3p − 6 or 6p − 2q = 12. So if we multiply the first
equation by six and subtract the second equation, we get. . .
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Theorem 8.1.8

Theorem 8.1.8 (continued)

Theorem 8.1.8. Suppose G s a maximal planar graph with p vertices and
q edges, where p ≥ 4. Let pi denote the number of vertices of degree i .
Then

3p3 + 2p4 + p5 = 12 + p7 + 2p8 + 3p9 + 4p10 + · · · .

Proof (continued). . . . So if we multiply the first equation by six and
subtract the second equation, we get

6p − 2q = 6
∞∑
i=3

pi −
∞∑
i=3

ipi =
∞∑
i=3

(6− i)pi = 12,

or

3p3 + 2p4 + p5 = 12 + p7 + 2p8 + 3p9 + 4P10 + · · ·+ (k − 6)Pk + · · · ,

as claimed.
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