Introduction to Graph Theory

Chapter 8. Drawings of Graphs
8.1. Planar Graphs—Proofs of Theorems

Pearls in Graph Theoru
 A Compretiensive introdirction Nora Hartsfield Gerhard Ringel

Table of contents

(1) Theorem 8.1.1. Euler's Polyhedral Formula
(2) Theorem 8.1.2
(3) Theorem 8.1.4
(4) Theorem 8.1.5
(5) Theorem 8.1.7
(6) Theorem 8.1.8

Theorem 8.1.1. Euler's Polyhedral Formula

Theorem 8.1.1. Euler's Polyhedral Formula.

If a plane drawing of a connected graph with p vertices and q edges has r regions, then $p-q+r=2$.

Proof. We give an induction argument on the number of cycles in the graph. If connected graph G has no cycles, then G is a tree and, by Theorem 1.3.2, $p=q+1$, and in a plane drawing of G there is $r=1$ region. So $p-q+r=(q+1)-q+(1)=2$, and the base case is established.

Theorem 8.1.1. Euler's Polyhedral Formula

Theorem 8.1.1. Euler's Polyhedral Formula.

If a plane drawing of a connected graph with p vertices and q edges has r regions, then $p-q+r=2$.

Proof. We give an induction argument on the number of cycles in the graph. If connected graph G has no cycles, then G is a tree and, by Theorem 1.3.2, $p=q+1$, and in a plane drawing of G there is $r=1$ region. So $p-q+r=(q+1)-q+(1)=2$, and the base case is established.

For the induction hypothesis, suppose the formula holds for all plane drawings of connected graphs with fewer than n cycles. Given a plane drawing of a connected graph G with n cycles, p vertices, q edges, and r regions, consider one cycle C of G. By the Jordan Curve Theorem, C divides the plan into an inside and an outside. Let e be an edge of C. Edge e is on the boundary of two distinct regions; one of these regions is inside C and the other is outside C.

Theorem 8.1.1. Euler's Polyhedral Formula

Theorem 8.1.1. Euler's Polyhedral Formula.

If a plane drawing of a connected graph with p vertices and q edges has r regions, then $p-q+r=2$.

Proof. We give an induction argument on the number of cycles in the graph. If connected graph G has no cycles, then G is a tree and, by Theorem 1.3.2, $p=q+1$, and in a plane drawing of G there is $r=1$ region. So $p-q+r=(q+1)-q+(1)=2$, and the base case is established.

For the induction hypothesis, suppose the formula holds for all plane drawings of connected graphs with fewer than n cycles. Given a plane drawing of a connected graph G with n cycles, p vertices, q edges, and r regions, consider one cycle C of G. By the Jordan Curve Theorem, C divides the plan into an inside and an outside. Let e be an edge of C. Edge e is on the boundary of two distinct regions; one of these regions is inside C and the other is outside C.

Theorem 8.1.1. Euler's Polyhedral Formula (continued)

Proof (continued).

Denote the region inside C as α and the region outside C as β. If we remove edge e, then regions α and β merge into one region. The plane drawing of $G-e$ has p vertices, $q-1$ edges, and $r-1$ regions. Since $G-e$ has fewer than c cycles, then by the induction hypothesis we have $p-(q-1)+(r-1)=2$. This simplifies to $p-q+r=2$, establishing the induction step. Therefore, by Mathematical Induction, the formula holds.

Theorem 8.1.2

Theorem 8.1.2. If G is a maximal planar graph with p vertices and q edges, where $p \geq 3$, then $q=3 p-6$.

Proof. Consider a plane drawing of G with r regions. Since G is a maximal planar graph, then by Note 8.1.B each region is bounded by three edges. In addition, every edge lies on two regions. We now count the number h of pairs (t, e) where t is a triangle, and e is an edge of t. Since each triangle contains three edges, and there are r triangles, then we have r choices for t and for each such choice we have 3 choices for e. Hence $h=3 r$.

Theorem 8.1.2

Theorem 8.1.2. If G is a maximal planar graph with p vertices and q edges, where $p \geq 3$, then $q=3 p-6$.

Proof. Consider a plane drawing of G with r regions. Since G is a maximal planar graph, then by Note 8.1.B each region is bounded by three edges. In addition, every edge lies on two regions. We now count the number h of pairs (t, e) where t is a triangle, and e is an edge of t. Since each triangle contains three edges, and there are r triangles, then we have r choices for t and for each such choice we have 3 choices for e. Hence $h=3 r$. Alternatively, since each edge is on the boundary of two triangles, and there are q edges, then we have q choices for an edge and for each such choice we have 2 choices for t. Hence $h=2 q$. Therefore, $h=3 r=2 q$ and by Euler's Polyhedral Formula (Theorem 8.1.1),
 or $q=3 p-6$, as claimed.

Theorem 8.1.2

Theorem 8.1.2. If G is a maximal planar graph with p vertices and q edges, where $p \geq 3$, then $q=3 p-6$.

Proof. Consider a plane drawing of G with r regions. Since G is a maximal planar graph, then by Note 8.1.B each region is bounded by three edges. In addition, every edge lies on two regions. We now count the number h of pairs (t, e) where t is a triangle, and e is an edge of t. Since each triangle contains three edges, and there are r triangles, then we have r choices for t and for each such choice we have 3 choices for e. Hence $h=3 r$. Alternatively, since each edge is on the boundary of two triangles, and there are q edges, then we have q choices for an edge and for each such choice we have 2 choices for t. Hence $h=2 q$. Therefore, $h=3 r=2 q$ and by Euler's Polyhedral Formula (Theorem 8.1.1),
$p-q+r=2$, we have $p-q+(2 q / 3)=2$ or $p-q / 3=2$ or $3 p-q=6$ or $q=3 p-6$, as claimed.

Theorem 8.1.4

Theorem 8.1.4. The graph K_{5} is not planar.

Proof. ASSUME K_{5} is planar. By Theorem 8.1.3, we must have $q \leq 3 p-6$. But for K_{5}, for which $p=5$ and $q=10$, this implies that $(10) \leq 3(5)-6=9$, a CONTRADICTION. So the assumption that K_{5} is planar is false, and hence K_{5} is not planar, as claimed.

Theorem 8.1.4

Theorem 8.1.4. The graph K_{5} is not planar.

Proof. ASSUME K_{5} is planar. By Theorem 8.1.3, we must have $q \leq 3 p-6$. But for K_{5}, for which $p=5$ and $q=10$, this implies that $(10) \leq 3(5)-6=9$, a CONTRADICTION. So the assumption that K_{5} is planar is false, and hence K_{5} is not planar, as claimed.

Theorem 8.1.5

Theorem 8.1.5. If G is a planar bipartite graph with p vertices and q edges, where $p \geq 3$, then $q \leq 2 p-4$.

Proof. Consider a plane drawing of G with r regions. Since G is bipartite, then by Theorem 2.1.2 G contains no odd length cycles, so that each region is bounded by [at least] four edges. In addition, every edge lies on two regions. We now count the number h of pairs (s, e) where s is a region, and e is an edge of s. Since each region contains at least four edges, and there are r regions, then we have r choices for s and for each such choice we have a least 4 choices for e. Hence $h \geq 4 r$.

Theorem 8.1.5

Theorem 8.1.5. If G is a planar bipartite graph with p vertices and q edges, where $p \geq 3$, then $q \leq 2 p-4$.

Proof. Consider a plane drawing of G with r regions. Since G is bipartite, then by Theorem 2.1.2 G contains no odd length cycles, so that each region is bounded by [at least] four edges. In addition, every edge lies on two regions. We now count the number h of pairs (s, e) where s is a region, and e is an edge of s. Since each region contains at least four edges, and there are r regions, then we have r choices for s and for each such choice we have a least 4 choices for e. Hence $h \geq 4 r$. Alternatively, since each edge is on the boundary of two regions, and there are q edges, then we have q choices for an edge and for each such choice we have 2 choices for s. Hence $h=2 q$. Therefore, $h=2 q \geq 4 r$ or $r \leq q / 2$, and by Euler's Polyhedral Formula (Theorem 8.1.1), $p-q+r=2$, we have $p=q-r+2$ or $p=q-r+2 \geq q-(q / 2)+2$ or $p \geq q / 2+2$ or $q \leq 2 p-4$, as claimed.

Theorem 8.1.5

Theorem 8.1.5. If G is a planar bipartite graph with p vertices and q edges, where $p \geq 3$, then $q \leq 2 p-4$.

Proof. Consider a plane drawing of G with r regions. Since G is bipartite, then by Theorem 2.1.2 G contains no odd length cycles, so that each region is bounded by [at least] four edges. In addition, every edge lies on two regions. We now count the number h of pairs (s, e) where s is a region, and e is an edge of s. Since each region contains at least four edges, and there are r regions, then we have r choices for s and for each such choice we have a least 4 choices for e. Hence $h \geq 4 r$. Alternatively, since each edge is on the boundary of two regions, and there are q edges, then we have q choices for an edge and for each such choice we have 2 choices for s. Hence $h=2 q$. Therefore, $h=2 q \geq 4 r$ or $r \leq q / 2$, and by Euler's Polyhedral Formula (Theorem 8.1.1), $p-q+r=2$, we have $p=q-r+2$ or $p=q-r+2 \geq q-(q / 2)+2$ or $p \geq q / 2+2$ or $q \leq 2 p-4$, as claimed.

Theorem 8.1.7

Theorem 8.1.7. Every planar graph contains at least one vertex of degree at most 5 .

Proof. ASSUME not and that G is some planar graph with all vertices of degree at least 6 . Then in G, by Theorem 1.1.1 we have $2 q=\sum_{v \in V} \operatorname{deg}(v) \geq \sum_{v \in V} 6=6 p$, of $q \geq 3 p$. But then Theorem 8.1.3 requires that a planar graph satisfies $q \leq 3 p-6$, a CONTRADICTION. So the assumption that such a graph exists is false, and the claim holds.

Theorem 8.1.7

Theorem 8.1.7. Every planar graph contains at least one vertex of degree at most 5 .

Proof. ASSUME not and that G is some planar graph with all vertices of degree at least 6 . Then in G, by Theorem 1.1.1 we have $2 q=\sum_{v \in V} \operatorname{deg}(v) \geq \sum_{v \in V} 6=6 p$, of $q \geq 3 p$. But then Theorem 8.1.3 requires that a planar graph satisfies $q \leq 3 p-6$, a CONTRADICTION. So the assumption that such a graph exists is false, and the claim holds.

Theorem 8.1.8

Theorem 8.1.8. Suppose G s a maximal planar graph with p vertices and q edges, where $p \geq 4$. Let p_{i} denote the number of vertices of degree i.
Then

$$
3 p_{3}+2 p_{4}+p_{5}=12+p_{7}+2 p_{8}+3 p_{9}+4 p_{10}+\cdots .
$$

Proof. Notice that p is the sum of the $p_{i}{ }^{\prime}$ s, and $2 q$ is the sum of the degrees of G by Theorem 1.1.1. That is,

$$
p=\sum_{i=3}^{\infty} p_{i} \text { and } 2 q=\sum_{i=3}^{\infty} i p_{i}
$$

(these are "formal series," since after some point all of the p_{i} 's are 0 and the sum is in fact finite). Since G is a maximal planar graph, then by Theorem 8.1.2, $q=3 p-6$ or $6 p-2 q=12$. So if we multiply the first equation by six and subtract the second equation, we get.

Theorem 8.1.8

Theorem 8.1.8. Suppose G s a maximal planar graph with p vertices and q edges, where $p \geq 4$. Let p_{i} denote the number of vertices of degree i. Then

$$
3 p_{3}+2 p_{4}+p_{5}=12+p_{7}+2 p_{8}+3 p_{9}+4 p_{10}+\cdots .
$$

Proof. Notice that p is the sum of the $p_{i}{ }^{\prime} s$, and $2 q$ is the sum of the degrees of G by Theorem 1.1.1. That is,

$$
p=\sum_{i=3}^{\infty} p_{i} \text { and } 2 q=\sum_{i=3}^{\infty} i p_{i}
$$

(these are "formal series," since after some point all of the p_{i} 's are 0 and the sum is in fact finite). Since G is a maximal planar graph, then by Theorem 8.1.2, $q=3 p-6$ or $6 p-2 q=12$. So if we multiply the first equation by six and subtract the second equation, we get. . .

Theorem 8.1.8 (continued)

Theorem 8.1.8. Suppose G s a maximal planar graph with p vertices and q edges, where $p \geq 4$. Let p_{i} denote the number of vertices of degree i.
Then

$$
3 p_{3}+2 p_{4}+p_{5}=12+p_{7}+2 p_{8}+3 p_{9}+4 p_{10}+\cdots
$$

Proof (continued). .. . So if we multiply the first equation by six and subtract the second equation, we get

$$
6 p-2 q=6 \sum_{i=3}^{\infty} p_{i}-\sum_{i=3}^{\infty} i p_{i}=\sum_{i=3}^{\infty}(6-i) p_{i}=12
$$

or

$$
3 p_{3}+2 p_{4}+p_{5}=12+p_{7}+2 p_{8}+3 p_{9}+4 P_{10}+\cdots+(k-6) P_{k}+\cdots,
$$

as claimed.

