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Theorem 9.1.3

Theorem 9.1.3

Theorem 9.1.3 Every simple drawing of K4 in the plane has either zero or
one crossing.

Proof. First, we observe that there are simple drawings of K4 with one
crossing and with no crossings, as shown in Figure 9.1.11.

We now prove that there is no more than one crossing by contradiction. In
a simple drawing, suppose that one crossing is already present. ASSUME
we can modify this drawing and introduce a second crossing in a modified
simple drawing.
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Theorem 9.1.3

Lemma 9.1.3 (continued 1)

Theorem 9.1.3 Every simple drawing of K4 in the plane has either zero or
one crossing.

Proof (continued). We denote the edge with end vertices a and b as
(ab) = (b, a). WLOG, suppose the edges that result in the one crossing
are (12) and (34), as shown in Figure 9.1.12.

Notice that in a simple drawing that edge (14) cannot cross edges (13),
(12), (34), or (24) by part (b) of the definition of simple drawing. So if
(14) crosses another edge then it must cross the edge (23). The boundary
of the added triangle in Figure 9.1.11 divides the plane into an inside and
an outside by the Jordan Curve Theorem (see Note 8.1.A).
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Theorem 9.1.3

Lemma 9.1.3 (continued 2)

Theorem 9.1.3 Every simple drawing of K4 in the plane has either zero or
one crossing.

Proof (continued).

So if the edge (14) crosses (23) then it cannot end at vertex 4, since (14)
cannot exit the triangular region because, as argued above, it cannot cross
(34) nor (12) and it cannot cross (23) a second time by part (a) of the
definition of simple drawing, a CONTRADICTION. So the assumption
that a simple drawing of K4 can have a second crossing is false, and hence
the number of crossings in a simple drawing of K4 is either zero or one, as
claimed.
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Theorem 9.1.4

Theorem 9.1.4

Theorem 9.1.4 The crossing number of K6 is cr(K6) = 3.

Proof. First, we see from Figure 9.1.13
that cr(K6) ≤ 3.

ASSUME there is a

simple drawing of K6 with only two
crossings. Then there are two edges in
K6 whose removal results in a planar
graph (notice that two crossings must
involve at least three edges, by part
(a) of the definition of simple drawing).
The resulting graph has p = 6 vertices and q = 13 edges. By Theorem
8.1.3 q ≤ 3p − 6, but this implies (13) ≤ 3(6)− 6 = 12, a
CONTRADICTION. So the assumption that there is a simple drawing of
K6 with only two crossings is false. Therefore cr(K6) = 3, as claimed.
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Theorem 9.1.5. Zarankiewicz’s Theorem

Theorem 9.1.5. Zarankiewicz’s Theorem

Theorem 9.1.5. Zarankiewicz’s Theorem.
The crossing number of Km,n satisfies the inequality

cr(Km,n) ≤
⌊m

2

⌋⌊
m − 1

2

⌋ ⌊n

2

⌋⌊
n − 1

2

⌋
.

Proof. In order to get an upper
bound for cr(Km,n), consider the
following figure (based on Figure 9.1.14)
where there are m blue vertices on the
vertical axis and n red vertices on the
horizontal axis (for illustration, we take
m = 6 and n = 8), evenly spaced and
centered on the intersection of the axes.

First suppose that m and n are both
even, say m = 2t and n = 2s.
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Theorem 9.1.5. Zarankiewicz’s Theorem

Theorem 9.1.5. Zarankiewicz’s Theorem (continued 1)

Proof (continued). Then there are t blue vertices on the top and t blue
vertices on the bottom, and there are s red vertices on the left and s
vertices on the right. Connect each red vertex to each blue vertex with a
straight line, as given in the figure. Notice that if multiple crossings occur
at the same point, then “we can simply move one of more vertices up or
down a small amount” (Hartsfield and Ringel, page 185) so that the
drawing is simple. In the first quadrant there is a crossing determined by
each pair of red vertices to the right of the origin together with each pair
of blue vertices above the origin (the edge joining the uppermost of the
two blue vertices and the leftmost of the two red vertices crosses the edge
joining the lowermost of the two blue vertices and the rightmost of the
two red vertices). Thus there are

(t
2

)(s
2

)
crossings in the first quadrant.

Since all four quadrants have the same number of crossings by symmetry
(since both m and n are even), then the total number of crossings is

4

(
t

2

)(
s

2

)
= 4

t(t − 1)

2

s(s − 1)

2
= t(t − 1)s(s − 1).
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Theorem 9.1.5. Zarankiewicz’s Theorem

Theorem 9.1.5. Zarankiewicz’s Theorem (continued 2)

Proof (continued). Thus this simple drawing shows that
cr(K2t,2s) ≤ t(t − 1)s(s − 1) =

⌊
m
2

⌋ ⌊
m−1

2

⌋ ⌊
n
2

⌋ ⌊
n−1
2

⌋
.

Next, suppose that m and n are both odd, say m = 2t + 1 and n = 2s + 1.
We follow the same basic argument as when both m and n are odd. We
place t + 1 blue vertices above the origin and t blue vertices below, and we
place s + 1 red vertices to the right of the origin and s vertices to the left.
We have lost the symmetry of the case when both m and n are even, and
this time in quadrants I, II, III, and IV we have

(t+1
2

)(s+1
2

)
,
(t+1

2

)(s
2

)
,(t

2

)(s
2

)
, and

(t
2

)(s+1
2

)
, respectively. So the total number of crossings is(

t + 1

2

)(
s + 1

2

)
+

(
t + 1

2

)(
s

2

)
+

(
t

2

)(
s

2

)
+

(
t

2

)(
s + 1

2

)

=

((
t + 1

2

)
+

(
t

2

)) ((
s + 1

2

)
+

(
s

2

))
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Theorem 9.1.5. Zarankiewicz’s Theorem

Theorem 9.1.5. Zarankiewicz’s Theorem (continued 3)

Proof (continued).

=

(
(t + 1)t

2
+

t(t − 1)

2

) (
(s + 1)s

2
+

s(s − 1)

2

)
=

(
t(t + 1 + t − 1)

2

) (
s(s + 1 + s − 1)

2

)
= t2s2.

Again, the simple drawing shows that
cr(K2t+1,2s+1) ≤ t2s2 =

⌊
m
2

⌋ ⌊
m−1

2

⌋ ⌊
n
2

⌋ ⌊
n−1
2

⌋
.

In the last case, we consider when one of m and n is even and the other is
odd. WLOG, say m = 2t + 1 and n = 2s. In Exercise 9.1.2 it is to be
shown (using the same technique as used in the first two cases) that
cr(K2t+1,2s) ≤ t2s(s − 1) =

⌊
m
2

⌋ ⌊
m−1

2

⌋ ⌊
n
2

⌋ ⌊
n−1
2

⌋
. Therefore, in all

possible cases of the parities of m and n we have

cr(Km,n) ≤
⌊m

2

⌋⌊
m − 1

2

⌋ ⌊n

2

⌋⌊
n − 1

2

⌋
, as claimed.
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Theorem 9.1.6

Theorem 9.1.6

Theorem 9.1.6. The crossing number of K3,n is cr(K3,n) =
⌊n

2

⌋⌊
n − 1

2

⌋
.

Proof. By Zarankiewicz’s Theorem (Theorem 9.1.5),
cr(K3,n) ≤ bn/2cb(n − 1)/2c. We show that in any simple drawing of K3,n

that there are at least bn/2cb(n − 1)/2c crossings.

ASSUME that we have
a simple drawing of K3,n in the plane with a minimal number c of
crossings. Say there are three blue vertices and n red vertices in the partite
sets of K3,n. The n red vertices will be the vertices of a new graph G .
Consider any two red vertices of K3,n; together with the three blue vertices
they form a K3,2. If there is not a crossing in this K3,2 in the simple
drawing of K3,n, then we insert a green edge between the two red vertices
in G .
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Theorem 9.1.6

Theorem 9.1.6 (continued 1)

Proof (continued). Thus G will have n (red) vertices and (as we go
through all

(n
2

)
pairs of red vertices) at least

(n
2

)
− c edges (“at least”

because a single K3,2 could have more than one crossing). G has no
triangles, since then there would be a drawing of K3,3 in the plane with no
crossings, contradicting Theorem 8.1.6.
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Theorem 9.1.6

Theorem 9.1.6 (continued 2)

Proof (continued). We have by Turan’s Theorem (Theorem 4.1.2) with
k = 2 (so that G contains no subgraph isomorphic to Kk+1 = K3), that
the number of edges of G is at most equal to the number of edges of
Kn1,n2 where n1 + n2 = n and |n1 − n2| ≤ 1. The number of edges of
Kn1,n2 is maximized for n1 = b(n + 1)/2c and n2 = bn/2c, when there are
b(n + 1)/2cbn/2c edges. So the number of edges of G is at most
b(n + 1)/2cbn/2c. We now have that:(

n

2

)
− c ≤ #edges of G ≤

⌊
n + 1

2

⌋ ⌊n

2

⌋
.

This implies that

(
n

2

)
−

⌊
n + 1

2

⌋ ⌊n

2

⌋
≤ c . By considering two cases

based on the even/odd parity of n, it is straightforward to show that(
n

2

)
−

⌊
n + 1

2

⌋ ⌊n

2

⌋
=

⌊n

2

⌋⌊
n − 1

2

⌋
.
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Theorem 9.1.6

Theorem 9.1.6 (continued 3)

Theorem 9.1.6. The crossing number of K3,n is cr(K3,n) =
⌊n

2

⌋⌊
n − 1

2

⌋
.

Proof (continued). Now

(
n

2

)
−

⌊
n + 1

2

⌋ ⌊n

2

⌋
≤ c and(

n

2

)
−

⌊
n + 1

2

⌋ ⌊n

2

⌋
=

⌊n

2

⌋⌊
n − 1

2

⌋
imply that

⌊n

2

⌋⌊
n − 1

2

⌋
≤ c .

Therefore
⌊n

2

⌋⌊
n − 1

2

⌋
≤ cr(K3,n). Since we have already shown that

cr(K3,n) ≤
⌊n

2

⌋⌊
n − 1

2

⌋
by Zarankiewicz’s Theorem (Theorem 9.1.5),

then equality holds as claimed.
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Theorem 9.1.7

Theorem 9.1.7

Theorem 9.1.7. The crossing number of K4,n is

cr(K4,n) = 2
⌊n

2

⌋⌊
n − 1

2

⌋
.

Proof. By Zarankiewicz’s Theorem (Theorem 9.1.5) we have

cr(K4,n) ≤ 2
⌊n

2

⌋⌊
n − 1

2

⌋
. We show that any simple drawing of K4,n has

at least
⌊n

2

⌋⌊
n − 1

2

⌋
crossings. Consider a simple drawing of K4,n with a

minimal number of crossings. As above, let the four vertices of one partite
set be blue and let the n vertices in the other partite set be red. Label the
blue vertices 1, 2, 3, 4. Denote the number of crossing in the drawing that
involve vertices 1 and 2 by h12, those that involve 1 and 3 by h13, and so
forth. There are

(4
2

)
= 6 such types of crossing and

h12 + h13 + h14 + h23 + h24 + h34 = cr(K4,n).
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crossings.
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Theorem 9.1.7 (continued)

Proof (continued). We get three more expressions for crossings in K3,n

by removing one of the other vertices 2, 3, 4 from the original drawing.
This produces four inequalities:

h23 + h24 + h34 ≥ cr(K3,n)
h13 + h14 + h34 ≥ cr(K3,n)

h12 + h14 + h24 ≥ cr(K3,n)
h12 + h13 h23 ≥ cr(K3,n)

2(h12 + h13 + h14 + h23 + h24 + h34) ≥ 4cr(K3,n)

Therefore we have cr(K4,n) ≥ 2cr(K3,n) = 2
⌊n

2

⌋⌊
n − 1

2

⌋
. Since we have

already shown that cr(K4,n) ≤ 2
⌊n

2

⌋⌊
n − 1

2

⌋
by Zarankiewicz’s Theorem

(Theorem 9.1.5), then equality holds as claimed.
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