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Chapter 10. Graphs on Surfaces

Note. In the first section of this chapter we define rotations of a graph and use it

to count circuits in the graph symbolically, without an appeal to drawings of the

graph. In the second section we use rotations and circuits to classify planar graphs

without an appeal th drawings, crossing numbers, or the Jordan Curve Theorem.

In the third section, we consider graphs on surfaces other than the plane, and

use rotations and circuits to find the genus of a graph (that is, we find the genus

of a surface in which the graph can be embedding without crossings). The book

concludes with some final observations of the chromatic number of a graph.

Section 10.1. Rotations of Graphs

Note. In this section, we introduce a rotation of a graph and use it to find “circuits”

in the graph. We give a symbolic way to represent rotations of a graph and use it

to find circuits without appealing to drawings of the graph. For a given rotation of

a graph, we give a relationship between the number of vertices, edges, and circuits

of a graph (in Theorem 10.1.2). We start with cubic graphs now, but consider more

general graph later in this section.

Definition. A rotation, denoted ρ, of a cubic graph G is an assignment of the

color black or the color white to each vertex.
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Note. The reason for the term “rotation” will become apparent. For a given

drawing, we associate the clockwise direction with all black vertices and the coun-

terclockwise direction with all white vertices, as given in the two diagrams on the

left of Figure 10.1.1.

The two diagrams on the right of Figure 10.1.1 are to be interpreted as follows. If

you travel along an edge of the cubic graph (in either of the two possible directions)

then after you reach a vertex, there are two options to continue onward. One is

to your left and the other is two your right. So when you travel to a black vertex

turn to your left at the vertex, and when you travel to a white vertex turn to your

right at the vertex.

Definition. If, in following a rotation through a cubic graph, you return to your

starting vertex in such a way that the next edge would be the first edge repeated

in the same direction, then the journey has determined a circuit. The circuit is

induced by the rotation. (Notice that a circuit consists of edges here, though you

might use the term “circuit” in reference to arcs elsewhere).

Note 10.1.A. A rotation ρ of a cubic graph is given in Figure 10.1.2 (left). There

are three circuits induced by ρ (Figure 10.1.2 right and Figure 10.1.3, below). We
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denote the number of induced circuits of a rotation ρ as r(ρ), so here we have

r(ρ) = 3. Notice that the circuit in Figure 10.1.3 left is not a cycle, since it repeats

one edge. Notice that each edge appears exactly twice in the collection of circuits

(once in each direction).

Note. Another rotation, ρ1, of the same graph given in Figure 10.1.2. In this case,

there is only one circuit induced by the rotation, so that r(ρ1) = 1.

Definition. A rotation of a graph which induces only one circuit is a circular

rotation.
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Note. We can describe a graph by numbering the vertices and then, for each

vertex, listing the vertices adjacent to that vertex. This is called a “scheme” for

the graph. Figure 10.1.8 gives a cubic graph and one of its schemes.

Notice that if the ith row contains j, then the jth row must contain i (because i

and j are adjacent to each other). In fact, any list with this property describes a

graph.

Note 10.1.B. Notice that the order in which the vertices appear in a row of a

scheme is irrelevant. So we can list the vertices for a cubic graph in such a way

as to indicate a rotation. In Figure 10.1.8, vertex 1 is white so it is treated as

counterclockwise. Reading off the vertices incident to vertex 1 in counterclockwise

order gives 6 3 2 (or 3 2 6 or 2 6 3; these three triples are “cyclic permutations” of

each other). In this way, a graph and a rotation can be given without a drawing

necessary. A scheme for the graph of Figure 10.1.8 which reflects the rotation is:
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However, the drawing affects this type of scheme. Here is another drawing of the

same graph with the same rotation, but the scheme is different, since it is different

at vertex 1:

The drawing also affects the circuits and the number of circuits. We saw in Figures

10.1.2 and 10.1.3 that, when drawn without any crossings, the graph has three

circuits with respect to the indicated rotation, r(ρ) = 3. If we take the same graph

with the same rotation, but consider the drawing with a crossing, we find that there

is only one circuit. Starting at vertex 6 and breaking the circuit into three pieces

for clarity, we have:

You will find if you use this same drawing, but modify the rotation so that vertex

1 is black, that there are three circuits that result (the same three circuits given in

Figures 10.1.2 and 10.1.3).
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Definition. A rotation of a vertex in a (not necessarily cubic) graph is (any cyclic

permutation of) an ordering of the vertices adjacent to that vertex. A rotation of

a graph consists of rotations of every vertex of the graph.

Note. For a cubic graph, there are only two rotations for a given vertex, a “clock-

wise” rotation and a “counterclockwise” rotation. If we drop these labels of “clock-

wise” and “counterclockwise” (which are dependent on the drawing), we can simply

use the ordering to determine the rotation of a vertex in a cubic graph. If the neigh-

bors of a vertex are a, b, c then the two rotations are a b c and a c b (either of which

can also be represented by a cyclic permutation of the given three vertices). Just

as with cubic graphs, we can use a scheme to represent a non-cubic graph and can

represent the rotation of each vertex by ordering the vertices. Since we can use

any ordering of the neighbors of a vertex, there are many possible rotations for a

vertex of high degree. Quantitatively, we have the next result.

Theorem 10.1.1. If a vertex v of a graph has degree d, then there are (d − 1)!

different rotations of v.

Note 10.1.C. By definition of a rotation, no edge is mapped to itself by a rotation

at a vertex unless the vertex is degree one.

Note. We can use the rotation of a graph to find circuits, without an appeal to a
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drawing. We present the rotation using a scheme that gives the rotation in terms

of the order in which neighbors are given. For K5 with vertex set {0, 1, 2, 3, 4},

consider the scheme and rotation:

0. 1 3 2 4

1. 3 0 2 4

2. 1 4 0 3

3. 2 4 1 0

4. 1 0 3 2

Starting at vertex 0 (say) we choose any neighbor, say 1. That is, we follow edge

0 1 from vertex 0 to vertex 1. In row 1 we see that after 0 (the vertex we are

coming from ) there is a 2, so next we follow edge 1 2 from vertex 1 to vertex 2.

Similarly, we consider row 2 and see that after 1 there is a 4, so next we follow

edge 2 4 In row 4, 2 is followed by 1 so we follow edges 4 1. We continue in the

way until we return to vertex 0 and do so in such a we that we would next follow

edge 0 1 (from row 1 this means that we must have come from vertex 4 to vertex

0 in the preceding step before we stop). The vertices in the circuit are, in order:

0 1 2 4 1 3 0 2 3 4 2 0 4 3 1 0 3 2 1 4. Next we would go to vertex 0 and complete the

circuit. Notice that there are 20 vertices here, and so 20 edges have been traverse.

That is, each of the 10 edges of K5 have been traversed in both directions, so there

are no other circuits in K5. With ρ as the rotation, we therefore have r(ρ) = 1 and

ρ is a circular rotation.

Note. In the next section, we will define a planar graph in purely graph theoretic

terms. We will use rotations and the number of circuits, which we now see can be
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handled in a mechanical way. The inequality in the next result will play a large

role in this approach.

Theorem 10.1.2. Given a connected graph with p vertices and q edges, and

a rotation ρ which induces r(ρ) circuits, the inequality p − q + r(ρ) ≤ 2 holds.

Furthermore, the alternating sum p− q + r(ρ) is even.

Note. Special things happen when equality holds in the inequality of Theorem

10.1.2. On to Secion 10.2. . .
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