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Section 10.3. The Genus of a Graph

Note. In this section, we address graphs on surfaces using the idea of rotations,

first introduced in Section 10.1. We briefly consider orientable closed surfaces of

genus g, though our examples mostly concentrate on the torus which is genus 1.

We define the genus of a graph in two ways and study the genus of complete graphs

and complete bipartite graphs. These topics are also covered in Graph Theory 2

(MATH 5450) in Section 10.6. Surface Embeddings of Graphs where nonorientable

surfaces are also discussed.

Note 10.3.A. If a graph can be drawn in the plane with no crossings, then it can

be drawn on the sphere with no crossings (and conversely). The reason for this is

that we can project the drawing from the plane to the sphere (or back) using the

stereographic projection of all but one point on the sphere onto the plane, as in the

following figure.

Image from the LibreTexts Mathematics,

1.3: Stereographic Projection webpage (accessed 2/1/2023).

The sphere is an example of a “closed surface” or a “surface with no boundary.”

Another example is a torus. Examples of surfaces that are not of this type include

https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-10-6.pdf
https://math.libretexts.org/Bookshelves/Abstract_and_Geometric_Algebra/Introduction_to_Groups_and_Geometries_%28Lyons%29/01%3A_Preliminaries/1.03%3A_Stereographic_projection
https://math.libretexts.org/Bookshelves/Abstract_and_Geometric_Algebra/Introduction_to_Groups_and_Geometries_%28Lyons%29/01%3A_Preliminaries/1.03%3A_Stereographic_projection
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a disk or a hemisphere (since both have a boundary). We shall refer to closed

surfaces simply as “surfaces,” and not explore surfaces very deeply but mostly

rely on informal descriptions and pictures of surfaces. Formally, a surface is a

“2-manifold”; an n-manifold is sort of an n-dimensional surface. A quick (but

rigorous) introduction to surfaces can be found in my online notes for Differential

Geometry (with an emphasis on relativity; MATH 5310) on Section 1.9. Manifolds.

A thorough coverage of n-manifolds is given in some other online notes I have for

Differential Geometry on Section VII.2. Manifolds. Complex manifolds (manifolds

based on complex number “patches”) are addressed in my online notes for Complex

Analysis 2 (MATH 5520) on Section IX. Analytic Manifolds. Of relevance to graph

theory, is the classification of surfaces. This would be covered in a senior/graduate

level Introduction to Topology 2 class. ETSU does not formally have such a class,

but I have some online notes (with more in preparation) for this on Algebraic

Topology (notice Chapter 12). An elementary, visual discussion of surfaces is given

in my online presentation (in PowerPoint) The Big Bang and the Shape of Space.

This presentation discusses what a “Flatland” character would experience as they

traveled on various surfaces.

Note/Definition. Figure 10.3.1 is of a torus. It has different “connectivity” from

that of a sphere. A surface with an even more complicated connectivity is given

in Figure 10.3.2; this surface has three “handles” and is denoted S3 in this section.

Similarly, the sphere is denoted S0 and a torus is denoted S1 (since it is a sphere

with one handle; or at least a sphere with one handle can be continuously deformed

into a torus). In general, a surface that results from adding g handles to a sphere is

https://faculty.etsu.edu/gardnerr/5310/5310pdf/dg1-9.pdf
https://faculty.etsu.edu/gardnerr/5310/notes-Dodson-Poston/Dodson-Poston-VII-2.pdf
https://faculty.etsu.edu/gardnerr/5510/notes/IX-6.pdf
https://faculty.etsu.edu/gardnerr/5357/notes2.htm
https://faculty.etsu.edu/gardnerr/5357/notes2.htm
https://faculty.etsu.edu/gardnerr/SoS/Shape-of-Space-Big-Bang.pptx
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denoted Sg is the orientable surface of genus g. We are interested in when a graph

G can be drawn on surface Sg with no edge crossings (such a drawing is called an

embedding of G in Sg).

Note/Definition. If a graph is embeddable into a surface Sg, then it is also

embeddable into Sg+1 (just avoid the additional handle when drawing the graph

on the more complicated surface). The minimum value of g for which graph G is

embeddable in Sg is the genus of G, denoted γ(G). We see from the stereographic

projection, that any planar graph has genus 0. We know that K5 and K3,3 are

nonplanar (by Theorems 8.1.4 and 8.1.6, respectively), so their genus is greater

than 0. We’ll see below that γ(K5) = γ(K3,3) = 1.

Note. A common way to represent a drawing of a graph on a torus is “peel apart”

the torus into a flat square (called the “fundamental domain” of the surface). The

drawing is then given on the square with the understanding that the sides are joined

together, and the top and bottom are joined together, as indicated by the arrows

in Figure 10.3.3 left.
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Note 10.3.B. Figure 10.3.4 gives two embeddings of K5 on the torus. Notice that

the edges at the top and bottom of Figure 10.3.4 left are actually two parts of the

same edge (as is the case for the edges at the left and right sides). In Figure 10.3.4

right, the edge that exists the left side continues on as it enters the right side; there

are only five vertices, but because of the connections of the fundamental domain

the vertices 0, 1, 2, 3 are repeated twice and the vertex 4 is repeated four times.

Figure 10.3.5 gives an embedding of K3,3 on the torus. Notice that the little arc in

the upper right hand corner is part of the edge joining 0 and 3.

Note. A thorough exploration of graphs on surfaces and the genus of a graph

would require a deep dive into topological graph theory and the topology of closed

surfaces. A reference on this is Bojan Mohar and Carsten Thomassen’s Graphs

on Surfaces, (Johns Hopkins University Press, 2001). I have notes in preparation

based on this source for Topological Graph Theory.

https://faculty.etsu.edu/gardnerr/5340/notes-Mohar-Thomassen.htm
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Note. For a connected graph G with p vertices, q edges, and rotation ρ, by

Theorem 10.1.2 the number of circuits r(ρ) induced by the rotation satisfies p −

q + r(ρ) ≤ 2. Also, p − q + r(ρ) must be even. The proof of Theorem 10.1.2 is

based only on connectivity (that is, the innate structure of the graph), and not on

any surface on which the graph might be embedded.

Definition. For a given connected graph G, a rotation ρ of G is a maximal rotation

of G if r(ρ) is as large as possible over all rotations of G.

Note 10.3.C. If G has a planar rotation ρ (so that p− q + r(ρ) = 2), then ρ is a

maximal rotation. If we consider K5 then p = 5 and q = 10. So for any rotation

of K5 we have p− q + r(ρ) = r(ρ)− 5 ≤ 2 (or r(ρ) ≤ 7) and r(ρ)− 5 is even. Now

r(ρ) 6= 7 because the shortest length a circuit can have is three (we could only have

a circuit of length two for the graph K2), and 7 circuits would require at least 21

edges (in both directions), but K5 only has 10 edges (which give 20 edges “in both

directions” for use in circuits). So we cannot have r(ρ) − 5 = 2 and it must be

(because of the evenness of r(ρ)− 5) that r(ρ) ≤ 5 for K5. A rotation of K5 with

r(ρ) = 5 (hence a maximal rotation of K5) is:

0. 1 4 3 2

1. 0 2 3 4

2. 0 3 4 1

3. 0 4 1 2

4. 0 1 2 3

The 5 circuits of this rotation are 0 1 2, 0 2 3, 0 3 4, 0 4 1, and 1 3 2 4 3 1 4 2. In
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fact, these circuits are precisely the boundaries of the faces of the embedding of K5

in the torus given in Figure 10.3.4 left (above). Another maximal rotation of K5

is:

0. 1 3 4 2

1. 2 4 0 3

2. 3 0 1 4

3. 4 1 2 0

4. 0 2 3 1

The 5 circuits of this rotation are 0 3 4 1, 0 2 1 4, 0 1 3 2, 0 4 2 3, 1 2 4 3. This

rotation is given in Section 10.1 of the text book (see page 214). In fact, these

circuits are precisely the boundaries of the faces of the embedding of K5 in the

torus given in Figure 10.3.4 right (above).

Note 10.3.D. If we consider K3,3 then p = 6 and q = 9. So for any rotation ρ of

K3,3 we have by Theorem 10.1.2 that p− q + r(ρ) = r(ρ)− 3 ≤ 2 (or r(ρ) ≤ 5) and

r(ρ)−3 is even (or r(ρ) is odd). Now K3,3 has 9 edges (which give 18 edges “in both

directions” for use in circuits). Since K3,3 is bipartite, the length of each circuit

must be even (and greater than two, as commented in Note 10.3.C). The largest

number of elements of {4, 6, 8, 10, 12, 14, 16, 18} which sum to 18 is four (consider

4+4+4+6 = 18). However r(ρ) = 4 is even, hence r(ρ) ≤ 3. With the labelings of

the vertices of K3,3 as given in Figure 10.3.5 above, the following rotation satisfies
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r(ρ) = 3 and hence is maximal:

0. 1 5 3

2. 1 5 3

4. 1 5 3

1. 0 4 2

3. 0 4 2

5. 0 4 2

The 5 circuits of this rotation are 0 1 4 5 2 3, 0 3 4 1 2 5, and 0 5 4 3 2 1. In fact,

these circuits are precisely the boundaries of the faces of the embedding of K3,3 in

the torus given in Figure 10.3.5 (above).

Note. The ideas presented in Notes 10.3.C and 10.3.D concerning the nonexistence

of a circuit of length two and the requirement that circuits in a bipartite graph must

be of even length can be used to prove the following (the proofs of which are to be

given in Exercises 10.3.3 and 10.3.4).

Theorem 10.3.1. If every circuit induced by a rotation ρ of a graph G has length

three, then ρ is a maximal rotation of G.

Theorem 10.3.2. In a bipartite graph G, if every circuit induced by a rotation ρ

of G has length four, then ρ is a maximal rotation of G.
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Note. Embeddings of K4,4 and K7 in the torus are given in Figures 10.3.6 and

10.3.7, respectively. Since K3,3 is not planar by Theorem 10.2.3 and K3,3 is a

subgraph of K4,4, then K4,4 is not planar by the contrapositive of Theorem 10.2.2.

Similarly K5 is not planar by Theorem 10.2.4 and K5 is a subgraph of K7, then

K5 is not planar by the contrapositive of Theorem 10.2.2. Hence γ(K4,4) 6= 0 and

γ(K7) 6= 0. Figures 10.3.6 and 10.3.7 then show that γ(K4,4) = 1 and γ(K7) = 1.

Next, we state “another definition” of the genus of a graph. We do not show that it

is equivalent to the definition above (in terms of an embedding in a surface of genus

g), but instead argue for its validity with some examples. The benefit of the new

definition is that it only involves properties of the graph (in particular, the number

of circuits induced by a maximal rotation) and does no involve the exploration of

the topology of surfaces.

New Definition. Let G be a connected graph with p vertices, q edges, and

maximal rotation ρ. The genus of graph G is γ(G) = g where p− q + r(ρ) = 2−2g.

Note. By Theorem 10.1.1, p − q + r(ρ) ≤ 2 and p − q + r(ρ) is even, so g is a

nonnegative integer. If G is planar if and only if g = 0, so that the “new definition”

is consistent with the definition of planar given in Section 10.2. For the embeddings
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of K5, K3,3, K4,4, and K7 given in Figures 10.3.4, 10.3.5, 10.3.6, and 10.3.7, we see

that each of these graphs has p = q + r(ρ) = 0 and so the genus of each is g = 1

(since we know these graphs are nonplanar, as already explained), consistent with

the previous definition of genus of a graph.

Theorem 10.3.3. For the complete bipartite graph Km,n,

γ(Km,n) ≥
(m− 2)(n− 2)

4
.

Note. We now show that the genus of K4,6 is g = 2. Let the vertex set be

V = {0, 1, 2, 3, 4, 5, 6, 7, 8, 10} (following the books notation; notice that 9 is missing

from the vertex labels) and let the partite sets be {0, 2, 4, 6, 8, 10} and {1, 3, 5, 7}.

Consider the rotation with the scheme:

0. 1 3 5 7

2. 7 5 3 1

4. 1 3 5 7

6. 7 5 3 1

8. 1 3 5 7

10. 7 5 3 1

1. 0 2 4 6 8 10

3. 10 8 6 4 2 0

5. 0 2 4 6 8 10

7. 10 8 6 4 2 0

The reason for presenting the scheme in this form will be apparent in the proof of
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the corollary to Theorem 10.3.3. There are 12 circuits, each of length 4, of this

rotation: 0 1 2 7, 0 3 10 1, 0 5 2 3, 0 7 10 5, 1 4 3 2, 1 6 7 4, 1 8 3 6, 1 10 7 8,

2 5 4 7, 3 4 5 6, 3 8 5 10, and 5 8 7 6. Since every circuit is of length four, then by

Theorem 10.3.2, this rotation is maximal. So p−q+r(ρ) = (4+6)− (4 ·6)+(12) =

−2 = 2 − 2g, hence g = 2. That is, γ(K4,6). In terms of the original definition of

genus of a graph, we see that this means we can embed K4,6 in a surface of genus

2. Such a surface is called a double torus. This idea can be generalized so that we

get the following corollary to Theorem 10.3.3.

Corollary 10.3.A. For the complete bipartite graph Km,n where m and n are both

even,

γ(Km,n) =
(m− 2)(n− 2)

4
.

Note. The coauthor of Pearls in Graph Theory, Gerhardt Ringel, gave the value

of γ(Km,n) for all m and n in “Das Geschlecht des vollständigen paaren Graphen,”

Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg,28, 139-

150 (1965).

Theorem 10.3.4. The genus of the complete bipartite graph is

γ(Km,n) =

⌈
(m− 2)(n− 2)

4

⌉
.
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Note 10.3.E. We next consider complete graphs. The embedding of K7 given in

Figure 10.3.7 (above) is associated with the following rotation scheme (based on a

clockwise rotation at each vertex):

0. 1 3 2 6 4 5

1. 2 4 3 0 5 6

2. 3 5 4 1 6 0

3. 4 6 5 2 0 1

4. 5 0 6 3 1 2

5. 6 1 0 4 2 3

6. 0 2 1 5 3 4.

Figure 10.3.7 can be used to see that the clockwise rotation produces induced

circuits of length three (though we want, and need for large graphs, to use the

schemes mechanically). This scheme satisfies the following rule:

Rule ∆∗. If in row i we have · · · , j, k, · · · , then in row k we have · · · , i, j, · · · .

A scheme for a rotation satisfying Rule ∆∗ induces only circuits of length three.

This is illustrated in Figure 10.3.9 below. From row i, we see that as we approach

vertex i from vertex j, that we then proceed to vertex k (Figure 10.3.9 left). By

Rule ∆∗ we know by row k of the scheme that is we approach vertex k from vertex

i, we then proceed to vertex j (Figure 10.3.9 second). Rule ∆∗ again implies that

row j reads: “j. · · · , k, i, · · · . So as we approach vertex j from vertex k, we then

proceed to vertex i (Figure 10.3.9 third), completing the circuit as we see by row i

again (Figure 10.3.9 right). If a scheme for a rotation satisfies ∆∗, then all circuits

induced by the rotation have length 3.
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Note 10.3.F. For K8, suppose the vertex set is {0, 1, 2, . . . , 7}. Consider the

rotation:

0. 2 7 3 1 4 5 6

2. 4 1 5 3 6 7 0

4. 6 3 7 5 0 1 2

6. 0 5 1 7 2 3 4

1. 7 6 5 2 4 0 3

3. 1 0 7 4 6 2 5

5. 3 2 1 6 0 4 7

7. 5 4 3 0 2 6 1.

We find that this rotation induces 16 circuits of length three and 2 circuits of length

four, so that r(ρ) = 16 + 2 = 18. Since the 28 edges of K8 involve 56 edges in the

circuits (in “both directions”), 56 ≡ 2 (mod 3), and 18 × 3 = 54, then a rotation

inducing 18 circuits would be maximal but it cannot consist only of length three

circuits. We have in the given rotation that 16 × 3 + 2 × 4 = 56 and hence this

rotation is maximal. By the new definition of genus, p− q + r(ρ) = 2− 2g, we have

(8) − (28) + (18) = 2 − 2g or γ(K8) = g = 2. By the first definition, this means

that K8 can be embedded in a surface of genus two. Such a surface is a sphere
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with “two handles.” This is also called a “double-torus” and can be visualized as

two tori attached to each other. The fundamental domain of a double torus can

be expressed as a hexagon where certain edges are joined together. In the image

below, the connections (and their directions) which produce the double torus are

indicated by multiple arrows on the edges of the hexagon. The embedding of K8 is

as as illustrated, where edges are given by different colors to help with identifying

different ends of the same edge. Can you find the two circuits of length four?

Image from the Math Stackexchange website (accessed 2/5/2023).

Theorem 10.3.5. The genus of the complete graph satisfies the inequality

γ(Kn) ≥
(n− 3)(n− 4)

12
.

Note. A rotation of K12 satisfying Rule ∆∗ was given by Lothar Heffter in “Ueber

das Problem der Nachbargebiete [About the Problem of Neighboring Areas],” Math-

https://math.stackexchange.com/questions/2496850/drawing-a-k-8-on-a-genus-2or-sphere-with-two-handles-or-double-torus
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ematische Annalen, 38, 477–508 (1891); available on The European Digital Math-

ematics Library webpage, accessed 2/6/2023. See page 494 for his rotation of K12.

Some biographical notes for Heffter are given in my online notes for senior/graduate

level Design Theory (not an official ETSU class) on Section 1.7. Cyclic Steiner Triple

Systems. Heffter proposed the problem of constructing Steiner triple systems using

a cyclic automorphism in 1897 (the problem was solved by Rose Peltesohn in 1939).

Since Heffter’s rotation satisfies Rule ∆∗, then every induced circuit has length three

and hence the rotation is maximal. In this case, the inequalities in the proof of

Theorem 10.3.5 are equalities and hence γ(K12) = ((12) − 3)((12) − 4)/12 = 6.

Heffter’s rotation is given on page 234 of the text book, though it does not resem-

ble the version given in Heffter’s 1891 paper (the vertices are different and likely

permuted around from Heffter’s original version). Heffter used the following rule:

Rule R∗. If in row i we have · · · , j, k, `, · · · , then in row k we have · · · , `, i, j, · · · .

In Exercise 10.3.6, it is to be shown that Rule ∆∗ and Rule R∗ are equivalent.

Note. In Section 4 of his 1891 paper, Heffter shows that equality holds in Theorem

10.3.5 for the case of K12t+7. We state this as a theorem.

Note 10.3.G. Before we consider equality in Theorem 10.3.5 for the case K12t+7,

we illustrate the technique for K19 (that is, t = 1). We construct row 0 using what

is called a “current graph.” Figure 10.3.10 gives the current graph for K19, and

this is circular as can be seen in Figure 10.2.11.

https://eudml.org/doc/157557
https://eudml.org/doc/157557
https://faculty.etsu.edu/gardnerr/Design-Theory/notes-Design-Theory-LR2/Design-Theory-LR2-1-7.pdf
https://faculty.etsu.edu/gardnerr/Design-Theory/notes-Design-Theory-LR2/Design-Theory-LR2-1-7.pdf
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We label the edges of the current graph as given in Figure 10.3.12, and “log” the

circuit beginning on any edge in any direction; notice that in Figure 10.3.12, the

sum of the “in edges” minus the “out edges” is 0. Following the directions of Figure

10.2.11, we then generate 18 numbers associated with the edges (in each direction)

where we take the edge label as positive if we traverse an edge in the direction of

the arrows given in Figure 10.3.12 and as negative is we traverse an edge in the

direction opposite of the arrows given in Figure 10.3.12. The log we get from Figure

10.3.12 (starting at edge 8, say) is

8 9 7 4 −2 −9 −1 5 −3 −7 2 6 1 −8 −5 −6 −4 3

We then replace each negative number −i with 19− i to get

8 9 7 4 17 10 18 5 16 12 2 6 1 11 14 13 15 3

With this as row 0, we find row i by adding i to every entry of row 0 and reducing

the result modulo 19 (such a scheme is called “additive”). This gives the rotation

scheme:

0. 8 9 7 4 17 10 18 5 16 12 2 6 1 11 14 13 15 3

1. 9 10 8 5 18 11 0 6 17 13 3 7 2 12 15 14 16 4

2. 10 11 9 6 0 12 1 7 18 14 4 8 3 13 16 15 17 5

...

18. 7 8 6 3 16 9 17 4 15 11 1 5 0 10 13 12 14 2
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Notice that this scheme satisfies Rule ∆∗. Suppose in row i we have · · · , j, k, · · · .

Because the scheme is additive, then in row 0 we have · · · , j− i, k− i, · · · . So in the

current graph there is some vertex with an edge coming in along edge j − i leaves

along edges k − i. Since the signed sum at each vertex of the current graph is 0,

the third edge leaving at the vertex must be leaving with label j−k (since (j− i)−

(k − i) − (j − k) = 0) and we have the configuration of Figure 10.3.13 (assuming

the vertex has a clockwise rotation; we get similar behavior at a counterclockwise

vertex).

Figure 10.3.13 (slightly modified)

So elsewhere in row 0 we must have · · · , i − k, j − k, · · · . By additivity again,

in row k we have · · · , i, j, . . . and hence Rule ∆∗ is satisfied. Therefore, by Note

10.3.E, all circuits induced by the rotation have length 3. Now by Theorem 10.3.1,

the rotation scheme (denoted ρ) is a maximal rotation of K19. Now the number

of circuits is r(ρ) =
(
2
(19

2

))/
3 = (19)(6) = 114. So, we have γ(K19) = g where

p − q + r(ρ) = 2 − 2g or (19) − (19)(18)/2 + 114 = 2 − 2g or g = 20 = ((19) −

3)((19)−4)/12 = (n−3)(n−4)/12, where n = 19. So we have equality in Theorem

10.3.5 when n = 19.
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Note 10.3.H. The use of a current graph as in Note 10.3.G allows us to show

that γ(Kn) =
(n− 3)(n− 4)

12
when n ≡ 7 (mod 12). Another current graph for use

in finding the genus of K31 is given in Figure 10.3.14. The current graph for the

general case K12t+7 is given in Figure 10.3.15.

This justifies the following.

Theorem 10.3.A. The genus of the complete graph Kn, where n = 12t + 7 and

t ≥ 0, satisfies

γ(Kn) =
(n− 3)(n− 4)

12
.

Note. Notice that Theorem 10.3.A shows that Theorem 10.3.5 reduces to equality

when n ≡ 7 (mod 12). In fact, Theorem 10.3.5 is best possible and reduces to

equality if we round up the upper bound on γ(Kn) (since, or course, γ(Kn) is an

integer). This is given as Theorem 10.3.6 below and is the result of a “massive
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endeavor” which appears in G. Ringel and J. W. Young, “Solution of the Heawood

Map-Coloring Problem,” Proceedings of the National Academy of Sciences, 60(2),

438–445 (1968). A copy is available online on the Proceedings of the National

Academy of Sciences webpage (accessed 2/6/2023). In Pearls in Graph Theory ,

contributions to the problem by Terry, Welch, and Gustin are mentioned.

Theorem 10.3.6. The genus of the complete graph Kn satisfies

γ(Kn) =

⌈
(n− 3)(n− 4)

12

⌉
for n ≥ 3.

Note. We conclude this section (and the book) with some results concerning the

chromatic number of a graph. Recall that the chromatic number of graph G, χ(G),

is the largest number of colors in a proper vertex coloring of G. Graph G is critical

with chromatic number χ is G has chromatic number χ and every subgraph of G,

other than G itself, has chromatic number less than χ.

Theorem 10.3.7. (Heawood) If G is critical, and γ(G) ≤ g, where g ≥ 1 (so

that G is nonplanar), then

χ(G) ≤
⌈

7 +
√

1 + 48g

2

⌉
.

Note. If we substitute g = 0 into the left side of the inequality of Theorem 10.3.7

then we see that χ(G) would be bounded by 4. This is equivalent to the Four Color

Theorem (see Section 8.2. The Four Color Theorem). The case g = 0 is omitted

https://www.pnas.org/doi/10.1073/pnas.60.2.438
https://www.pnas.org/doi/10.1073/pnas.60.2.438
https://faculty.etsu.edu/gardnerr/5347/Notes/Pearls-GT-8-2.pdf
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from Theorem 10.3.7, due (likely) to the lengthy history of the Four Color Theorem

and the fact that Heawood did not prove this case. Theorems 10.3.6 and 10.3.7

combine to give the following.

Theorem 10.3.8. (The Map Color Theorem) For every g ≥ 1, there exists a

critical graph G where γ(G) ≤ g and

χ(G) =

⌈
7 +

√
1 + 48g

2

⌉
.

Note. In the event that g = 1 and we are considering a torus as the surface,

Theorem 10.3.8 implies that there is a graph that can be embedded on the torus

with chromatic number 7. In fact, K7 can be embedded on the torus and of course

is has chromatic number 7. See Figure 3.9(a) in my online notes for Graph Theory

2 (MATH 5450) on Section 15.1. Chromatic Numbers of Surfaces.
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