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Chapter 2. Colorings of Graphs

Section 2.1. Vertex Colorings

Note. One of the most influential problems in the history of graph theory is

the Four Color Problem. It involves showing that for any map of countries, the

countries can be assigned colors such that any two countries sharing a border have

difference colors. This problem seems to first appear in 1852. After a famously

false proof of 1879, a correct proof published in 1977. The 1977 proof heavily relied

on computer to check cases and resulted in some controversy. A very detailed story

of the problem can be found in Robin Wilson’s Four Colors Suffice: How the Map

Problem was Solved, Princeton: Princeton University Press (2002). A brief version

of this history is in my online notes for Graph Theory 2 (MATH 5450) on 11.1.

Colourings of Planar Maps. We will explore this in our Section 8.2, “The Four

Color Theorem.”

https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-11-1.pdf
https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-11-1.pdf
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Definition. The wheel with n spokes, denoted Wn, is the graph that consists of an

n-cycle and one additional vertex that is adjacent to all the vertices of the cycle.

A color can be assigned to each vertex of the graph (often denoted with numbers

or symbols). A coloring of a graph is an assignment of colors to the vertices of G

such that no two adjacent vertices have the same color.

Note. Figure 2.1.1 gives the wheels W4 and W5. The numerical labels can be

thought of as colors and each wheel has a coloring, since adjacent vertices are given

different colors.

Definition. The smallest number of colors for which G has a coloring is the

chromatic number of G, denoted χ(G).

Note. To show that χ(G) = n we must show that G has a coloring with n colors

but does not have a coloring with n − 1 colors. Consider Kp. Certainly Kp has a

coloring with p colors and no fewer colors, so χ(Kp) = p. Now if we “subtract” an

edge e from Kp, say the ends of e are u and v, then there is a coloring of Kp−e with

p− 1 colors by assigning u and v the same color and then assigning the remaining
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p − 2 vertices each a different color (and colors different from the one assigned to

vertices u and v). So the only graph on p vertices with chromatic number p is Kp.

Notice that χ(W4) = 3 and χ(W5) = 4.

Note. Now consider the following graph:

Since there is a subgraph isomorphic to K4, then we see that χ(G) ≥ 4. If G can

be colored with only 4 colors, then vertex a and vertex b must be the same color

(because of the neighbors of b), and similarly vertex c and vertex b must be the

same color. But then we have a and c of the same color, which is forbidden. So

we must have χ(G) ≥ 5. A coloring of G with 5 colors is given below. So we have

χ(G) = 5.
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Definition/Notation. Let G be a graph and v a vertex of G. Then “G − v”

denotes the graph that results from G by removing vertex v and all edges incident

to v. Let e be an edge of G. Then “G− e” denotes the graph that results from G

by removing edge e (and removing no vertices of G).

Definition. If H is a subgraph of graph G and H 6= G, then G is a proper subgraph

of G. If χ(H) < χ(G) for every proper subgraph H of G, then G is a critical graph.

Note. A complete graph is a critical graph. Also, the graph given in Figure 2.1.2

above is a critical graph. The following is “easy to verify” and is left as Exercise

2.1.20.

Theorem 2.1.1. Every critical graph is connected.

Note. The next result guarantees, of a given graph, the existence of a sort of

minimal subgraph that of G that determines the chromatic number of G.

Theorem 2.1.2. Every graph G contains a critical subgraph H such that χ(H) =

χ(G).

Note. In fact, Theorem 2.1.2 can be easily extended (with a similar proof) to

the following. Notice that in Figure 2.1.2, we have a graph G with each vertex of

degree 4 and χ(G) = 5, which illustrates the next result.
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Theorem 2.1.3. If G is critical with chromatic number χ, then the degree of each

vertex is at least χ− 1.

Theorem 2.1.4. If G is a critical graph with p vertices and q edges, and G has

chromatic number χ, then the relation (χ− 1)p ≤ 2q holds.

Definition. The girth of a graph is the length of a shortest cycle in the graph.

Note. Figure 2.1.17 gives a critical graph of girth 4.

Note. We might think that a graph of large girth must have relatively few edges

connecting vertices and hence a low chromatic number. However, the next re-

sult shows that there exist graphs with arbitrarily high girth and arbitrarily high

chromatic number. This result was proved by Paul Erdős in 1961 (in “Graph The-

ory and Probability II,” Canadian Journal of Mathematics, 13, 346–352 (1961))

and also by L. Lovász in “On Chromatic Number of Finite Set-Systems,” Acta

Mathematica Academiae Scientiarum Hungaricae, 79, 59–67 (1967)). Some details

about the proof are online on Charalampos E. Tsourakakis’ (of Boston University)

webpage (accessed 1/21/2021).

https://tsourakakis.com/2011/12/02/large-girth-and-chromatic-number/
https://tsourakakis.com/2011/12/02/large-girth-and-chromatic-number/
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Theorem 2.1.5. (Erdős-Lovász). For every two integers m, n ≥ 2, there exists a

graph with chromatic number n whose girth exceeds m.

Definition. A graph G is bipartite if χ(G) ≤ 2. In a coloring of bipatite graph G

with two colors, the set X of all vertices of one color and the set Y of all vertices

of the other color form a partitioning of the vertex set of G into two partite sets.

Note. In a bipartite graph G with partite sets X and Y , notice that every edge

of G must have one end in X and one end in Y . This property is commonly taken

as the definition of a bipartite graph.

Definition. Let G be a graph with vertices x and y. The distance from x to y in

G, denoted g(x, y), is the length of the shortest path in G from x to y. If there is

not path from x to y, we say d(x, y) =∞.

Note. One can show for any vertices x, y, and a in a connected graph, we have

(1) d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y, (2) d(x, y) = d(y, x), and

d(x, y) + d(y, z) ≤ d(x, z) (this is The Triangle Inequality). These properties show

that d is a metric on G.

Theorem 2.1.6. A graph G is bipartite if and only if every cycle in G has even

length.
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Note. Since a tree has no cycles, then every cycle of a tree is of even length

(vacuously) and hence every tree is a bipartite graph.

Definition. The diameter of a graph G is the maximum distance between any two

vertices of G.

Note. The diameter of a path Pn is n, the diameter of a wheel Wn is 2, and the

diameter of a complete graph Kn is 1.
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