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Chapter 3. Circuits and Cycles

Section 3.2. The Oberwolfach Problem

Note. The town of Oberwolfach is in Baden-Württemberg in southwestern Ger-

many. It is the home of the Oberwolfach Research Institute for Mathematics or

Mathematisches Forschungsinstitut Oberwolfach. When meals were served during

meetings, the institute tried to have everyone sit next to everyone else at least

once. Most of the tables have six places, but some tables are larger than others.

Idealized, the problem is, given 2n + 1 = t1 + t2 + · · · + ts and s round tables

T1, T2, . . . , Ts such that table Ti seats ti people, 2n + 1 people should have dinner

for n nights so that after a meeting everyone has sit next to everyone else. Gerhard

Ringel (one of the authors of our text book) posed this problem and named it the

“Oberwolfach Problem” in 1967. Ths is documented in R. K. Guy’s “Unsolved

Combinatorial Problems” in Combinatorial Mathematics and its Applications, ed.

D. Welsh, Academic Press (1971), pp. 121–127.It remains, in its general version,

unsolved, but many special cases have been solved.

Note. The Oberwolfach Problem can be stated in graph theoretical terms as

follows.

Oberwolfach Problem. Given a graph T with 2n+1 vertices that is

regular of degree two (meaning that T consists of one or more cycles of

various lengths), decompose the complete graph K2n+1 into n subgraphs

isomorphic to T .
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Graph T represents the collection of tables where the vertices are the people, so

that adjacency in T corresponds to two people sitting next to each other. If there

is only one table, then the graph T is a Hamilton cycle in K2n+1. A solution is then

given by a Hamilton cycle decomposition of K2n+1, which we have from Theorem

2.3.1.

Note. We denote graph T , which represents s tables T1, T2, . . . , T2 where table Ti

sets ti people, as (t1, t2, . . . , ts) (by convention, we take ti ≤ ti+1 for 1 ≤ i ≤ s).

Figure 3.2.1 gives a solution to the Oberwolfach Problem for graph T as (4, 3) (so

that 2n + 1 = 7).

The “turning trick” is to be applied to the 3-cycle and 4-cycle given on the left to

produce the three seatings given on the right. That is, we take the 3-cycle (y, 0, 3)

and the 4-cycle (1, 2, 4, 5) (where we represent an n-cycle on vertices v0, v1, . . . , vn−1,

with vi and vj adjacent if and only if j ≡ i + 1 (mod n), as (v0, v1, . . . , vn−1) or

any cyclic permutation of this) and apply the permutation (y)(1, 2, 4, 5) to get the

seatings:

(y, 0, 3), (1, 2, 4, 5); (y, 1, 4), (2, 3, 5, 0); (y, 2, 5), (3, 4, 0, 1)
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(notice that applying the permutation again, that is “turning” again, returns the

last seating to the first). Additional solutions are given in Figures 3.2.2 and 3.2.3.

Note. For the remainder this section, we concentrate of regular graphs, mostly

3-regular graphs. Recall that a bridge in a connected graph G is an edge whose

removal disconnects G.

Theorem 3.2.1. A regular graph of even degree has no bridge.

Note. Our next three results concern cubic graphs and decompositions into 1-

factors, 2-factors, and paths of length two.

Theorem 3.2.2. A cubic graph that contains a bridge is not decomposable into

three 1-factors.

Note. Recall from Section 2.2. Edge Colorings that a snark is a cubic graph with

edge chromatic number four (also recall that a color class in an edge coloring forms

a 1-factor). So a snark is not decomposable into three 1-factors. The following

decomposition result is due to Julius Petersen (of the Petersen graph fame) and

appeared in “Die Theorie der regulären Graphen [The Theory of Regular Graphs],”

Acta Mathematica, 15, 193–220 (1891).

https://faculty.etsu.edu/gardnerr/5347/Notes/Pearls-GT-2-2.pdf
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Theorem 3.2.3. (Petersen) A cubic bridgeless graph G has a decomposition

into a 1-factor and a 2-factor.

Note. We do not present a proof of Petersen’s Theorem (Theorem 3.2.3), but a

proof can be found in my Graph Theory 2 (MATH 5450) notes on Section 16.4.

Perfect Matchings and Factors (see Theorem 16.14). There, the result is stated

as: “Every 3-regular graph without cut edges has a perfect matching.” This is

equivalent to our statement, since 3-regular and cubic mean the same thing, a “cut

edge” is a bridge, and a perfect matching is a 1-factor; if we remove the edges of

a 1-factor from a cubic graph, what is left must be a collection of edges forming

a 2-regular spanning subgraph (that is, a 2-factor). In fact, since since in a cubic

graph the set of edges of a 1-factor has as its complement with respect to the edge

of the graph as a set of edges of a 2-factor, we could also state Petersen’s Theorem

as: “Every cubic bridgeless graph has a 2-factor.” An application of Petersen’s

Theorem (Theorem 3.2.3) is the following.

Theorem 3.2.4. Every cubic bridgeless graph is decomposable into paths of length

three.

Note. A “famous conjecture” of Claude Berge proved by Limin Zhang in “Ev-

ery 4-regular Simple Graph Contains a 3-regular Subgraph,” Journal of Changsha

Railway Institute, No. 1, 130–154 (1985) is the following.

https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-16-4.pdf
https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-16-4.pdf
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Theorem 3.2.5 (Berge and Zhang) Every 4-regular graph contains a 3-regular

subgraph.

Note. Figures 3.2.7 and 3.2.8 on page 64 of the text book give examples of (small)

4-regular graphs which have 1-factors (and so have 3-regular subgraphs, as insured

by Theorem 3.2.5).
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