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Section 4.3. Ramsey Theory

Note. In this section we consider edge-colorings of complete graphs with two

colors. We look for conditions (in terms of the number of vertices of the complete

graph) such that the two subgraphs induced by monochromatic edges must contain

complete subgraphs of a given size. We start with a small example (stated as a

lemma).

Lemma 4.3.A. If the edges of K6 are colored with two colors, then there must

be a monochromatic triangle. Also, K6 is minimal complete graph with respect to

this property.

Note. In popular-level applications of graph theory, Lemma 4.3.A is sometimes

called the “Theorem on Friends and Strangers.” The setting is a party with six

people. Two of the party attendees are mutual strangers if they have never met

before and are mutual acquaintances if they have met before. The Theorem on

Friends and Strangers states that: “In any party of six people either at least three

of them are (pairwise) mutual strangers or at least three of them are (pairwise)

mutual acquaintances.” The six attendees are represented by vertices of K6. Edges

joining mutual strangers are colored red and edges joining mutual acquaintances are

colored blue. By Lemma 4.3.A, the K6 must contain a red or a blue triangle. That

is, there are at least three mutual strangers (corresponding to a red triangle) or at

least three mutual acquaintances (corresponding to a blue triangle), as claimed by

the Theorem on Friends and Strangers. This information is from the Wikipedia

webpage on the Theorem of Friends and Strangers (accessed 5/7/2022).

https://en.wikipedia.org/wiki/Theorem_on_friends_and_strangers
https://en.wikipedia.org/wiki/Theorem_on_friends_and_strangers
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Note. In the spirit of Lemma 4.3.A, it is also known that if the edges of K18

are colored with two colors, then there must be a monochromatic K4 and K18

is the minimal complete graph with respect to this property, as we will discuss

below. These are examples of a more general result. It is due to Frank P. Ramsey

(February 22, 1903–January 19, 1930).

Image from the MacTutor History of Mathematics Archive biography of Ramsey

(accessed 5/7/2022)

Ramsey worked in philosophy, mathematics, and economics. He was a friend of

Ludwig Wittgenstein while at the Trinity College of Cambridge University (Lon-

don). In his paper “On a Problem of Formal Logic,” Proceedings of the Lon-

don Mathematical Society 30(1), 264–286 (1930) (a version is available online on

William Gasarch’s University of Maryland webpage; the 1928 date on the paper

reflects the fact that it was read to the society on December 13, 1928), Ramsey

presents the main result of this section. However, as the title of the paper sug-

gests, this was not the main focus of the paper, though this is probably his most

famous result, and the theorem appears more in passing than as the focus of his

https://mathshistory.st-andrews.ac.uk/Biographies/Ramsey/
https://www.cs.umd.edu/~gasarch/BLOGPAPERS/ramseyorig.pdf
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work which was addressing a decidability problem in first order logic. His related

work on a theory of types (related to the work of Russell and Whitehead in their

three volume Principia Mathematica of the early 1900s; this work appeared as F.

P. Ramsey, F.P. “The Foundations of Mathematics,” Proceedings of the London

Mathematical Society, 25(1), 338-384 (1926)) was later used by Kurt Gödel in his

work on incompleteness. For details on this work in mathematical foundations,

see my online notes for Introduction to Modern Geometry (MATH 4157/5157)

on Section 1.6. Completeness and Categoricalness and my online presentation for

Great Ideas in Science 1 and 2 (BIOL 3018 and BIOL 3028) on Introduction to

Math Philosophy and Meaning. Ramsey died of complications following abdomi-

nal surgery for liver problems in 1930. He was a month shy of his 27th birthday.

This biographical information is from the Wikipedia page on Frank Ramsey (ac-

cessed 5/7/2022). Ramsey’s Theorem relates to two colorings and monochromatic

complete subgraphs.

Theorem 4.3.1. Ramsey’s Theorem.

For every number n, there is a number r(n) such that any edge-coloring of the

complete graph with r(n) vertices using red and blue must contain either a red Kn

or a blue Kn.

Note. Notice that Ramsey’s Theorem (Theorem 4.3.1) does not actually give the

value of r(n), but merely guarantees the existence of of such a value. We will

get Ramsey’s Theorem out as a corollary to a more general result which we will

prove (Theorem 4.3.2 below). To motivate the generalization, we consider another

lemma.

https://faculty.etsu.edu/gardnerr/Geometry/notes-Wylie/Geometry-Wylie-1-6.pdf
https://faculty.etsu.edu/gardnerr/GIS/math-meaning.pdf
https://faculty.etsu.edu/gardnerr/GIS/math-meaning.pdf
https://en.wikipedia.org/wiki/Frank_Ramsey_(mathematician)
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Lemma 4.3.B. If the edges of K9 are colored with red and blue, then there is

a subgraph of this K9 that is either a red K3 or a blue K4. Also, K9 is minimal

complete graph with respect to this property.

Definition. The Ramsey number r(m, n) is the smallest number with the property

that any edge-coloring of the complete graph with r(m, n) vertices using red and

blue must contain a red Km or a blue Kn.

Note 4.3.A. Lemma 4.3.B shows that r(3, 4) = 9. When m = 1 or m = 2, we

can easily find r(m, n). We have r(1, n) = 1 since any edge-coloring of K1 with

two colors contains a red K1 or a blue Kn, because Km = K1 has no edges so that

all edges of Km = K1 are red (vacuously). We also have r(2, n) = n because any

edge-coloring of Kn with red and blue contains either a red K2 (i.e., a red edge)

or a blue Kn (when no edges are red and all edges are blue). Other than these

two easy classes of Ramsey numbers, very few other Ramsey numbers are precisely

known (though bounds exist which give a range of possible values for other Ramsey

numbers). Hartsfield and Ringel (copyright 1990) give the following as the only

known precise values (see their page 84):

r(1, n) = 1 and r(2, n) = n as just explained,

r(3, 3) = 6 by Lemma 4.3.A, r(3, 4) = 9 by Lemma 4.3.B,

r(3, 5) = 14, r(3, 6) = 18, r(3, 7) = 23, r(3, 9) = 36, and r(4, 4) = 18.

The values of r(3, 5) and r(4, 4) are established in Graph Theory 2 (MATH 5450)

in Section 12.3. Ramsey’s Theorem. A document giving the latest results on these

https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-12-3.pdf
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studies is “Small Ramsey Numbers” document by Stanis law P. Radziszowski (Re-

vision #16: January 15, 2021; accessed 5/7/2022). It includes two more known

Ramsey numbers. The fact that r(3, 8) = 28 was shown in B.D. McKay and

Zhang Ke Min’s “The Value of the Ramsey Number R(3, 8),” Journal of Graph

Theory, 16, 99–105 (1992). The fact that r(4, 5) = 25 was shown in B.D. McKay,

and S. Radziszowski’s “R(4, 5) = 25,” Journal of Graph Theory 19(3), 309-322

(1995). The Wikipedia webpage on Ramsey’s theorem includes some of the same

information; it is less academic, but might be updated faster in the event of new

discoveries (accessed 5/7/2022). We now state and prove an inequality related to

Ramsey numbers.

Theorem 4.3.2. For every m and n, there exists the Ramsey number r(m, n) such

that edge-coloring Kr(m,n) with red and blue implies that Kr(m,n) contains either

a red Km or a blue Kn. Furthermore, r(m, n) satisfies the inequality r(m, n) ≤

r(m− 1, n) + r(m, n− 1).

Note. With m = n in Theorem 4.3.2 (so that r(n, n) = r(n)), we have that

Ramsey’s Theorem (Theorem 4.3.1) follows from Theorem 4.3.2. We now consider

a result related to those above, except that it involves complete bipartite graphs

instead of complete graphs.

Lemma 4.3.C. If the edges of K5,5 are colored with two colors, there will be a

monochromatic K2,2.

Revised: 5/21/2022

https://www.combinatorics.org/files/Surveys/ds1/ds1v16-2021.pdf
https://en.wikipedia.org/wiki/Ramsey%27s_theorem

