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Chapter 5. Counting

Section 5.1. Counting 1-Factor

Note. In this section we count the number of different subgraphs of a particu-

lar type in some graph (usually a type of complete bipartite or complete graph).

Throughout, we use the Fundamental Counting Principle; see my online notes for

Applied Combinatorics and Problem Solving (MATH 3340) on Section 1.1. The

Fundamental Counting Principle. Hartsfield and Ringel state the results of this

section as “Problems,” but they are presented here as theorems.

Theorem 5.1.A. There are n! 1-factors in Kn,n.

Theorem 5.1.B. There are
n!

2(n− k − 1)!
different subgraphs of Kn isomorphic to

path Pk.

Note. Recall that

(
n

k

)
is the number of combinations of k objects taken from a

set of size n. Algebraically, it is

(
n

k

)
=

n!

k!(n− k)!
. For more details, see my online

notes for Foundations of Probability and Statistics-Calculus Based (MATH 2050)

on Section 2.2. Counting Methods; see Note 2.2.D.

Theorem 5.1.C. There are n

(
n− 1

3

)
different subgraphs of Kn isomorphic to

K1,3.

https://faculty.etsu.edu/gardnerr/3340-Applied-Combinatorics/notes-Combinatorics/Merris-1-1.pdf
https://faculty.etsu.edu/gardnerr/3340-Applied-Combinatorics/notes-Combinatorics/Merris-1-1.pdf
https://faculty.etsu.edu/gardnerr/2050/Navidi-notes/Navidi-2-2.pdf
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Theorem 5.1.D. There are
(2h− 1)!

2h−1(h− 1)!
different 1-factors in K2h.

Note 5.1.A. Next, we consider the number of 1-factors in the graph “Kn,n minus

a 1-factor.” This might seem related to Theorem 5.1.A where we saw that there

are n! 1-factors in Kn,n itself, but as we will see by formula given in Theorem 5.1.E,

the number of 1-factors in Kn,n minus a 1-factor is not a simple factorial. Interest

in this question can be motivated by the Hatcheck Problem. Suppose a group of n

people go to a restaurant and check their hats. How many ways can their hats be

returned to them so that no person gets the correct hat back? The Letter Problem

is similar. In this, a secretary has typed n letters and addressed n envelopes for the

letters. The letters are matched with their corresponding envelope in a pile on the

desk. The janitor knocks the letters and envelopes off the desk. How many ways

can the janitor pick up the letters and envelopes so that every letter is associated

with the wrong envelope? Both of these problems are examples of a derangement

of n objects. Both involve matching up an object in one category with an object in

another category (the objects correspond to vertices, the categories correspond to

the partite sets in Kn,n, and the matching corresponds to the edges of a 1-factor).

So the number of 1-factors in the graph Kn,n minus a 1-factor is the number of

derangements of n objects.

Theorem 5.1.E. There number of different 1-factors in Kn,n minus a 1-factor is

n!

(
1

2!
− 1

3!
+

1

4!
− · · ·+ (−1)n−1

(n− 1)!
+

(−1)n

n!

)
.
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Note 5.1.B. We know from Calculus 2 that the series representation for ex is

ex = 1 +
x

1!
+

x2

2!
+

x3

3!
+ · · ·+ xn

n!
+ · · · .

See my online Calculus 2 notes on Section 10.8. Taylor and Maclaurin Series. So

e(−1) = 1 +
(−1)

1!
+

(−1)2

2!
+

(−1)3

3!
+ · · ·+ (−1)n

n!
+ · · ·

=
1

2!
− 1

3!
+

1

4!
− · · ·+ (−1)n

n!
+ · · · .

Therefore, for n large the number of 1-factors in Kn,n minus a 1-factor satisfies

Dn ≈ n!/e.

Note. Hartsfield and Ringel antoher example of a derangement concerning a test

consisting of 10 questions that are to be matched with 10 answers. Every collection

of answers corresponds to a 1-factor in K10,10. One of these 1-factors gets all

questions correct. If we remove this 1-factor from Kn,n then we remove all edges

corresponding to correct answers and all of the edges left correspond to incorrect

answers. Hence, a 1-factor in Kn,n minus a 1-factor is the number of ways to

complete the test and get all of the questions wrong. By Theorem 5.1.A, the

number of ways to complete the test is 10!. If a student answers the questions

randomly, then the probability of getting all questions correct is 1/10! and the

probability of all questions wrong is

Dn

10!
≈ 10!/e

10!
=

1

e
.

Since 1/e ≈ 1/3, guessing the matches on such a test gives a probability of roughly

1/3 of getting all questions wrong!
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