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Chapter 5. Counting

Section 5.2. Cayley’s Spanning Tree Formula

Note. Recall that a spanning tree of a graph G is a subtree of G that contains all

vertices of G. In Graph Theory 1 (MATH 5340), it is shown that the number of

labeled trees on n vertices is nn−1 and it is argued that the number of labeled treed

on n vertices is equal to the number of spanning trees of Kn (see my online notes for

that class on Section 4.2. Spanning Trees; notice Theorem 4.8). While considering

the number of hydrocarbons of a certain type (those without “cycles”), Arthur

Cayley (1821-1895) represented atoms as vertices and chemical bonds as edges.

In “A Theorem on Trees,” Quarterly Journal of Pure and Applied Mathematics,

23 (1889), 376–378, he proved that the number of spanning trees on n (labeled)

vertices is nn−2. This is now called “Cayley’s Formula.” In this section we give a

proof using sequence of elements of {1, 2, . . . , n} associated with a spanning tree

of Kn (these sequences are called “Prüfer codes”). This approach is to be used

in Exercise 4.2.11 in J. A. Bondy and U. S. R. Murty’s Graph Theory, Graduate

Texts in Mathematics #244 (Springer, 2008); this is the text used in the graduate

Graph Theory sequence (MATH 5340, MATH 5450).

Theorem 5.2.1. Cayley’s Formula. The number of spanning trees in Kn is

s(Kn) = nn−2.

https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Bondy-Murty-GT-4-2.pdf
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Note. By considering spanning trees in a given Kn, we are effectively considering

the vertices as labeled. The effect of this is that we distinguish between subtrees

that are isomorphic. We are not counting the number of tree on n vertices “up

to isomorphism”; this problem is unsolved according to Hartsfield and Ringel (see

page 95).

Note. Cayley’s Formula “clearly” holds for n = 3, since a complete graph on three

vertices yield nn−2 = (3)(3)−2 = 3 trees (each determined by deleting a single edge

of K3). For n = 4, there are nn−2 = (4)(4)−2 = 16 spanning trees of K4, as given in

Figure 5.2.1 (notice that the label of a vertex is implied by location; in fact, there

are only two trees on 4 vertices “up to isomorphism,” namely K1,3 and P3). For

the general proof, we use the following lemma.
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Lemma 5.2.A. The number of different sequences (b1, b2, . . . , bn−2) of length n−2,

where bi ∈ {1, 2, . . . , n} and repetition is allowed, is nn−2.

Note. To prove Cayley’s Formula (Theorem 5.2.1), we establish a one-to-one

correspondence (i.e., a bijection) between the set of spanning trees of Kn and the

set of sequences of length n−2 from {1, 2, . . . , n}. We now illustrate the creation of

the sequence (or Prüfer code). Consider the tree T with n = 7 vertices as follows:

We think of N = {1, 2, . . . , 7} as an ordering (and a labeling) of the vertices of

T . We’ll denote the associated sequence as (t1, t2, t3, t4, t5). First we consider the

vertex of degree 1 with the smallest label; this is vertex 1. Next, we set t1 equal

to the vertex label of the one neighbor of vertex 1; this is t1 = 3. Then we delete

vertex 1 from T to create tree T1 (above, first row center). We then repeat the

process so that the smallest label of a vertex of degree 1 in T1 is 2. We set t2 equal

to the vertex label of the one neighbor of vertex 2; that is t2 = 3. Delete vertex

2 from tree T1 to create tree T2 (above, first row right). The smallest label of a
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vertex of degree 1 in T2 is 3. We set t3 equal to the vertex label of the one neighbor

of vertex 3; that is t3 = 4. Delete vertex 3 from tree T2 to create tree T3 (above,

second row left). The smallest label of a vertex of degree 1 in T3 is vertex 5. We

set t4 equal to the vertex label of the one neighbor of vertex 5; that is t4 = 4.

Delete vertex 5 from tree T3 to create tree T4 (above, second row center). The

smallest label of a vertex of degree 1 in T4 is vertex 6. We set t5 equal to the vertex

label of the one neighbor of vertex 6; that is t5 = 4. Delete vertex 6 from tree

T4 to create tree T5 (above, second row right). We stop here. The Prüfer code is

(t1, t2, t3, t4, t5) = (3, 3, 4, 4, 4). Notice that the degree of vertex 3 in original tree T

is three and 3 appears twice in the Prüfer code. The degree of vertex 4 in T is four

and 4 appears three times in the Prüfer code. In fact, if a vertex v has degree k in

the original tree, then number v will appear k− 1 times in the sequence; therefore,

the degree 1 vertices do not appear in the Prüfer code.

Note. We now illustrate the reversal of the above process. That is, we start with

the sequence (3, 3, 4, 4, 4) and construct tree T . We start with the smallest element

of the set N = {1, 2, 3, 4, 5, 6, 7} that does not appear in the sequence. This is 1.

We connect 1 to the first vertex in the sequence, vertex 3. Then we delete vertex 1

from set N to get N1 = N \{1} and delete the first entry in the sequence to get the

new shortened sequence (3, 4, 4, 4) (see below top). Now 2 is the smallest vertex

label in N1 = {2, 3, 4, 5, 6, 7} not in sequence (3, 4, 4, 4), so we connect it to the first

vertex in sequence (3, 4, 4, 4), vertex 3. Then we define N2 = N1 \ {2} and delete

the first entry of the shortened sequence to get (4, 4, 4) (see below second from top).

Now 3 is the smallest vertex label in N2 = {3, 4, 5, 6, 7} not in sequence (4, 4, 4), so
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we connect it to the first vertex in sequence (4, 4, 4). Then we define N3 = N2 \{3}

and delete the first entry of the shortened sequence to get (4, 4) (see below third).

Now 5 is the smallest vertex label in N3 = {4, 5, 6, 7} not in sequence (4, 4), so we

connect it to the first vertex in sequence (4, 4). Then we define N4 = N3 \ {5} and

delete the first entry of the shortened sequence to get (4) (see below fourth). Now

6 is the smallest vertex label in N4 = {4, 6, 7} not in sequence (4), so we connect

it to the first vertex in sequence (4). Then we define N5 = N4 \ {6} and delete the

only entry of the shortened sequence (4) so that the sequence is gone (see below

fifth). Finally, we connect the last two numbers in N5 = {4, 7} (see below last).

Notice that the tree above is the same as the tree T in the creation of the Prüfer
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code (3, 3, 4, 4, 4) above. Hartsfield and Ringel use the above examples, along with

an argument that the process of creating the Prüfer code from a tree and the pro-

cess of creating a tree from a Prüfer code are (in general) inverses of each other.

We prefer a cleaner proof and now present the proof of Cayley’s Formula (Theorem

5.2.1) given in J.A. Bondy and U.S.R. Murty’s Graph Theory with Applications,

Macmillan Press, 1976 (see Theorem 2.9 in their Section 2.4 “Cayley’s Formula”).

This proof originally appeared in Heinz Prüfer’s “Neuer Beweis eines Satzes über

Permutationen [New Proof of a Theorem on Permutations],” Archiv der Mathema-

tischen Physik, 27(3), 142–144 (1918).
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