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Chapter 6. Labeling Graphs

Section 6.1. Magic Graphs and Graceful Trees

Note. In this section, we define magic graphs and argue that all complete sym-

metric bipartite graphs Kn,n is magic except for n = 2. We relate decompositions

into Hamilton cycles to magic graphs. We define antimagic graphs and give two

conjectures concerning them. We define graceful and consecutive trees and relate

them to other decompositions and to each other.

Definition. A graph G with q edges is magic if the edges of G can be labeled

by the numbers 1, 2, 3, . . . , q so that the sum of the labels of all the edges incident

with any vertex is the same.

Note. Two examples of magic graphs are given in Figure 6.1.2. The sum of the

labels of the edges incident a vertex is 21 for the graph on the left and 24 for the

graph on the right.
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Note. A “magic square” is an n × n array containing each of 1, 2, . . . , n2 exactly

once, such that the sums of edges and the sums of the columns are all the same. It

is well known that an n×n magic square exists for all n ≥ 3. We can use an n×n

magic square to show that the complete bipartite graphs Kn,n are magic for n ≥ 3.

For example, the 3× 3 magic square in Figure 6.1.4 and the 4× 4 magic square in

Figure 6.1.5 yield the labelings of K3,3 in Figure 6.1.3 and of K4,4 in Figure 6.1.6.

We can see from Figure 6.1.3 that the edges incident to the vertices in one partite

set are labeled with the entries of the rows of the magic square, and the edges

incident to the vertices in the other partite set are labeled with the vertices of the

columns of the magic square. We can generalize this by enumerating the vertices in

the partite sets and labeling the edge from the ith vertex of the first partite set to

the jth vertex of the second partite set with the entry in the ith row and j column

of the magic square. This observation results in the next theorem.
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Theorem 6.1.1. Kn,n is magic for all n 6= 2.

Note. Notice in Figure 6.1.6 that K4,4 can be decomposed into two Hamilton

cycles; one of the cycles is given by solid edges and the other by dotted edges. In

fact, a decomposition of a bipartite graph into Hamilton cycles implies that the

graph is magic, as we now prove.

Theorem 6.1.2. If a bipartite graph G is decomposable into two Hamilton cycles,

then G is magic.

Note. The labeling of the bipartite graph K5,5 is illustrated in Figure 6.1.7. Notice

the edges with odd-number labels are on the outer Hamilton cycle, and the edges

with even-number labels are on the inner Hamilton cycle.
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Note. Bipartite graphs are not the only graphs that are magic. Figure 6.1.9 gives

a non-bipartite graph (notice the existence of 3-cycles) which is magic. The sum

of the edge labels incident to each vertex is 34. There is a typo in the figure in the

book; one edge is labeled 18 and it should be labeled 16 (as it is here).

Note. Complete graphs have been classified in terms of the property of being

magic. In Exercise 6.1.6 it is to be shown that if n ≡ 0 (mod 4) then Kn is not

magic. In fact, for all n ≥ 6 with n 6≡ 0 (mod 4), Kn is a magic graph. This result

appears in B. M. Stewart’s “Supermagic Complete Graphs,” Canadian Journal of

Mathematics, 19, 427–438 (1967); the term “supermagic” used in the title means

the same as our term “magic.” This paper is online on the Cambridge University

Press website (accessed 1/4/2023). The next theorem allows us to potentially

construct magic graphs from magic spanning subgraphs.

Theorem 6.1.3. If a graph G is decomposable into two magic spanning subgraphs

G1 and G2 where G2 is regular, then G is magic.

https://www.cambridge.org/core/journals/canadian-journal-of-mathematics/article/supermagic-complete-graphs/B3910B84BD52F5ECB703F4EC446EB3DF
https://www.cambridge.org/core/journals/canadian-journal-of-mathematics/article/supermagic-complete-graphs/B3910B84BD52F5ECB703F4EC446EB3DF
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Definition. A graph G with q edges is antimagic if the edges of G can be labeled

by the numbers 1, 2, 3, . . . , q so that the sum of the labels of all the edges incident

with any vertex is different from the sum of the labels at any other vertex.

Note. Figure 6.1.11 gives four examples of antimagic graphs.

Note. Not nearly as much is known about antimagic graphs as is known about

magic graphs. Two conjectures concerning antimagic graphs are:

Conjecture 6.1.A. Every tree different from K2 is antimagic.

Conjecture 6.1.B. Every connected graph different from K2 is antimagic.

Since every tree is (by definition) a connected graph, the second conjecture is much

stronger than the first.

Definition. Consider a tree with n vertices (and so n−1 edges by Theorem 1.3.2).

If it is possible to label the vertices by 1, 2, 3, . . . , n and the edges by 1, 2, 3, . . . , n−1

so that the label on any edge equals the difference between the labels of the two

endpoints, then the tree is graceful.
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Note. The idea of a graceful labeling of a simple graph in general (not just a tree)

can similarly be defined. The study of graceful graphs and graceful labelings is

an area more widely studied than antimagic graphs (and more studied than magic

graphs, in the opinion of your humble instructor). Evidence of this is the fact that

there is a Wikipedia page for graceful labelings and there is not one for antimagic

graphs (as of 1/4/2023).

Note. Figures 6.1.13 and 6.1.14 give graceful labelings of two small trees.

The Graceful Tree Conjecture claims that every tree is graceful. This conjecture

is due to Gerhard Ringel (one of the authors of this book), though the Wikipedia

page mentioned above credits the conjecture to both Ringel and Anton Kotzig.

Note. Graceful labelings and the “turning trick” are related to decomposition

problems. We mentioned difference methods in passing in Section 2.3. Decompo-

sitions and Hamilton Cycles; more details are given in my online notes for Design

Theory (not an official ETSU class) on Section 1.7. Cyclic Steiner Triple Systems

https://en.wikipedia.org/wiki/Graceful_labeling
https://faculty.etsu.edu/gardnerr/5347/Notes/Pearls-GT-2-3.pdf
https://faculty.etsu.edu/gardnerr/5347/Notes/Pearls-GT-2-3.pdf
https://faculty.etsu.edu/gardnerr/Design-Theory/notes-Design-Theory-LR2/Design-Theory-LR2-1-7.pdf
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and in my online notes for graduate level Graph Theory 1 (MATH 5340) on Sup-

plement. Graph Decompositions: Triple Systems. Below is an image of a labeling

of the nine vertices of a tree. Ignoring the other vertices, this is a graceful labeling,

since the (absolute value of) the associated “differences” on the eight edges are 1,

2, . . . , 8. Now there are a total of 17 vertices here. If we label all the vertices as

1, 2, . . . , 17 then total possible differences associated with any edge is 1, 2, . . . , 8.

So if we apply the “turning trick” to the pictured tree and rotate it around then

it will produce all edges of K17. That is, this graceful labeling of the given tree

implies that K17 can be decomposed into copies of the tree (17 copies, in fact).

This approach works for any graceful tree, so that we have the following.

Theorem 6.1.4. If a tree T with n edges is graceful, then the complete graph

K2n+1 is decomposable into 2n + 1 trees, each isomorphic to the given tree T .

Definition. Consider a labeling of the set of vertices and edges of tree T with

n edges by the consecutive integers 1, 2, 3, . . . , 2n − 1. The labeling of T is a

consecutive labeling of T if the label of every edge equals the absolute value of the

difference of the labels of the two vertices of the edge.

https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Graph-Decompositions-Triple-Systems.pdf
https://faculty.etsu.edu/gardnerr/5340/notes-Bondy-Murty-GT/Graph-Decompositions-Triple-Systems.pdf
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Note. Here is an example of a consecutive labeling of a small tree.

In fact, if a tree with n edges has a graceful labeling, then it can be used to generate

a consecutive labeling of the tree. Below (left) is a graceful labeling of the tree

above. We modify this graceful labeling by replacing vertex label k with the label

2k − 1, so that all vertex labels are then odd numbers. Next, we label each edge

by the (absolute value of) the difference of the endpoints, and then each label will

be even and will be twice the original label. This last claim follows by considering

vertices originally labeled j and k, so that the edge joining them in the graceful

labeling is |j − k|. Under the new labeling, the vertices become labeled 2j − 1 and

2k− 1, respectively, and the new edge label is |(2j − 1)− (2k− 1)| = 2|j − k|. The

consecutive labeling of the tree on the left produced by this process is given on the

right. This results, in general, in a consecutive labeling and our last theorem of

this section.

Theorem 6.1.5. If a tree T is graceful, then T is consecutive.
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Note. It is conjectured that all trees have consecutive labelings. Of course this

is weaker than the conjecture that all trees are graceful (Conjecture 6.1.A), by

Theorem 6.1.5. Again, consecutive labelings, like graceful labelings, can defined

for general simple graphs, not just for trees.
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