Introduction to Topology

Chapter 2. Topological Spaces and Continuous Functions Section 13. Basis for a Topology—Proofs of Theorems

Theorem 13.A

Theorem 13.A. Let \mathcal{B} be a basis for a topology on X. Define

 $\mathcal{T} = \{ U \subset X \mid x \in U \text{ implies } x \in B \subset U \text{ for some } B \in \mathcal{B} \},$

the "topology" generated be \mathcal{B} . Then \mathcal{T} is in fact a topology on X.

Proof. We consider the definition of "topology."

- (1) $\varnothing \in \mathcal{T}$ vacuously. Now $X \in \mathcal{T}$ since each $x \in X$ satisfies $x \in \mathcal{B} \subset X$ for some $\mathcal{B} \in \mathcal{B}$ by the definition of topology generated by ${\cal B}$.
- (2) Let $\{U_{\alpha}\}_{\alpha\in J}$ be an arbitrary collection of elements of \mathcal{T} . Let hence by definition U is open. by \mathcal{B} ," $x \in \mathcal{B} \subset \mathcal{U}_{\alpha}$ for some $\mathcal{B} \in \mathcal{B}$. So $x \in \mathcal{B} \subset \mathcal{U}$ and Since $U_{lpha}\in\mathcal{T}$, then by the definition of "topology generated $U = \bigcup_{\alpha \in J} U_{\alpha}$. For $x \in U$ we have $x \in U_{\alpha}$ for some $\alpha \in J$.

Theorem 13.A (continued)

Introduction to Topology

Theorem 13.A. Let \mathcal{B} be a basis for a topology on X. Define

 $X = \{ U \subset X \mid x \in U \text{ implies } x \in B \subset U \text{ for some } B \in \mathcal{B} \},$

the "topology" generated be \mathcal{B} . Then \mathcal{T} is in fact a topology on X.

Proof (continued).

- (3) Let $U_1,U_2\in\mathcal{T}.$ For $x\in U_1\cap U_2$, by the definition of definition of "basis for a topology," there is $\mathcal{B}_3 \in \mathcal{B}$ with $x \in B_3$ and $B_3 \subset B_1 \cap B_2 \subset U_1 \cap U_2$. Hence $U_1 \cap U_2 \in \mathcal{T}$. with $B_1, B_2 \in \mathcal{B}$ and $x \in B_1$, $x \in B_2$. By part (2) of the $\{ \mathcal{U}_1, \mathcal{U}_2, \dots, \mathcal{U}_n \} \subset \mathcal{T} \text{ satisfies } \mathcal{U}_1 \cap \mathcal{U}_2 \cap \dots \cap \mathcal{U}_n \in \mathcal{T}.$ Next, by mathematical induction, any finite collection "topology generated by $\mathcal{B},$ " there is $\mathcal{B}_1 \subset \mathcal{U}_1$ and $\mathcal{B}_2 \subset \mathcal{U}_2$
- So \mathcal{T} satisfies the definition of topology and \mathcal{T} is a topology on X.

Lemma 13.1

Introduction to Topology

3 / 10

Lemma 13.1. Let X be a set and let \mathcal{B} be a basis for a topology \mathcal{T} on XThen ${\mathcal T}$ equals the collection of all unions of elements of ${\mathcal B}$

of elements of \mathcal{B} . so in \mathcal{T} . Since \mathcal{T} is a topology, then by part (2) of the definition of **Proof.** As stated in Theorem 13.A above, all elements of \mathcal{B} are open and "topology," any union of elements of ${\mathcal B}$ are in ${\mathcal T}$. So ${\mathcal T}$ contains all unions

of elements of ${\cal B}$ and the result follows generated by \mathcal{B}''). Then $U = \cup_{x \in \mathcal{U}} B_x$, so \mathcal{U} equals a union of elements of \mathcal{B} . Since \mathcal{U} is an arbitrary element of \mathcal{T} , then all elements of \mathcal{T} are unions $x \in \mathcal{B}_{\mathsf{x}} \subset \mathcal{U}$ (which can be done by the definition of "topology TNext, suppose $U \in \mathcal{T}$. For each $x \in U$ choose $B_x \in \mathcal{B}$ such that

Introduction to Topology May 29, 2016 4 / 10 Introduction to Topology

May 29, 2016 5 / 10

Lemma 13.2 (continued)

Lemma 13.2

each $x \in U$, there is an element $C \in C$ such that $x \in C \subset U$. Then C is a basis for the topology T on X. collection of open sets of X such that for each open subset $U \subset X$ and **Lemma 13.2.** Let (X, T) be a topological space. Suppose that C is a

definition of basis are satisfied and ${\mathcal C}$ is a basis for a topology on X. there is $C_3 \in \mathcal{C}$ such that $x \in C_3 \subset C_1 \cap C_2$. So both parts of the so is $C_1 \cap C_2$ by part (3) of the definition of topology. Then by hypothesis of basis, let $x \in C_1 \cap C_2$ where $C_1, C_2 \in C$. Since C_1 and C_2 are open then there is $X \in \mathcal{C}$ such that $x \in \mathcal{C} \subset X$. For the second part of the definition of basis, for $x \in X$ (since X itself is an open set) then (by hypothesis) **Proof.** First we show that $\mathcal C$ is a basis. For the first part of the definition

> basis for the topology \mathcal{T} on X. each $x \in U$, there is an element $C \in \mathcal{C}$ such that $x \in C \subset U$. Then \mathcal{C} is collection of open sets of X such that for each open subset $U \subset X$ and **Lemma 13.2.** Let (X,T) be a topological space. Suppose that C is a

open (definition of topology, part (2)) so ${\mathcal W}$ belongs to ${\mathcal T}$. That is, the definition of "topology generated by") and a union of open sets is $\mathcal{T}'\subset\mathcal{T}$. Therefore, $\mathcal{T}=\mathcal{T}'$ Now each element of $\mathcal C$ is an element of $\mathcal T$ (see the comment at the end of "topology generated by" C, U is in T' and hence $T \subset T'$. Conversely, if for topology \mathcal{T} , there is $C \in \mathcal{C}$ such that $x \in C \subset \mathcal{U}$. So, by the definition now show that T = T'). First, if $U \in T$ and $x \in U$, then since C is a basis **Proof (continued).** Let T' be the topology on X generated by C (we W belongs to \mathcal{T}' then W is a union of elements of \mathcal{C} by Lemma 13.1.

May 29, 2016 7 / 10

Lemma 13.3

Lemma 13.3. Let $\mathcal B$ and $\mathcal B'$ be bases for topologies $\mathcal T$ and $\mathcal T'$, respectively, on X. Then the following are equivalent:

- (1) \mathcal{T}' is finer than \mathcal{T} .
- (2) For each $x \in X$ and each basis element $\mathcal{B} \in \mathcal{B}$ containing x, there is a basis element $B' \in \mathcal{B}$ such that $x \in B' \subset \mathcal{B}$.

 $x \in \mathcal{B}' \subset \mathcal{B}$. Then $x \in \mathcal{B}' \subset \mathcal{U}$ and by the definition of "topology generated by" \mathcal{B}' , we have $\mathcal{U} \in \mathcal{T}'$. So $\mathcal{T} \subset \mathcal{T}'$ and (1) follows. **Proof.** (2) \Rightarrow (1) Given $U \in \mathcal{T}$, let $x \in U$. Since \mathcal{B} generates \mathcal{T} , there is $\in \mathcal{B}$ such that $x \in \mathcal{C} \subset \mathcal{U}$. By hypothesis (2), there is $\mathcal{B}' \in \mathcal{B}'$ such that

by \mathcal{B}' , there is (by definition) $B' \in \mathcal{B}''$ such that $x \in B' \subset B$ and (2) $B\in \mathcal{T}$. By hypothesis (1), $\mathcal{T}\subset \mathcal{T}'$ and so $B\in \mathcal{T}'$. Since \mathcal{T}' is generated $(1)\Rightarrow(2)$ Let $x\in X$ and $B\in\mathcal{B}$ where $x\in B$. Since \mathcal{B} generates \mathcal{T} , then

Lemma 13.4

the standard topology on \mathbb{R} , but are not comparable with one another. **Lemma 13.4.** The topologies of \mathbb{R}_{ℓ} and \mathbb{R}_{K} are each strictly finer than

 ${\mathcal T}$ by Lemma 13.2containing x which is a subset of [x,d). Therefore \mathcal{T}' is strictly finer than hand, given basis element [x,b) for T', there is no open interval (a,b)element $[x,b) \in \mathcal{T}'$ contains x and satisfies $[x,b) \subset (a,b)$. On the other respectively. Given a basis element (a,b) for T and $x \in (a,b)$, the basis **Proof.** Let \mathcal{T} , \mathcal{T}' , and \mathcal{T}'' be the topologies of \mathbb{R} , \mathbb{R}_{ℓ} , and \mathbb{R}_{K} ,

strictly finer than ${\mathcal T}$ by lemma 13.2. open interval (a,b) containing 0 which is a subset of B. Therefore \mathcal{T}'' is basis element $B=(-1,0)\setminus \mathcal{K}$ for \mathcal{T}'' contains the point 0, but there is no $(a,b)\in \mathcal{T}'$ contains x and satisfies $(a,b)\subset (a,b)$. On the other hand, the Given a basis element (a, b) for T and $x \in (a, b)$, the same basis element

In Exercise 13.6 you will show that topologies \mathcal{T}' and \mathcal{T}'' are not

I Heoretti 13.

Theorem 13.B

Theorem 13.B. Let S be a subbasis for a topology on X. Define $\mathcal T$ to be all unions of finite intersections of elements of S. Then $\mathcal T$ is a topology on X.

Proof. Let \mathcal{B} be the set of all finite intersections of elements of \mathcal{S} :

$$\mathcal{B} = \{S_1 \cap S_s \cap \cdots \cap S_n \mid n \in \mathbb{N}; S_1, S_2, \dots, S_n \in \mathcal{S}\}.$$

Let $x \in X$. Then $x \in S$ for some $S \in S$ by the definition of subbasis, and so $x \in S$ where $S \in \mathcal{B}$. S part (1) of the definition of " \mathcal{B} is a basis" is satisfied. Now let $B_1, B_2 \in \mathcal{B}$. Then $B_1 = S_2 \cap S_2 \cap \cdots \cap S_m$ and $B_2 = S_1' \cap S_2' \cap \cdots \cap S_n' \in \mathcal{B}$ and $B_2 \subset B_1 \cap B_2$ so that part (2) of the definition of " \mathcal{B} is a basis" is satisfied and so \mathcal{B} is a basis for a topology on X. The topology for which \mathcal{B} is a basis is, by Lemma 13.1, the topology consisting of all unions of elements of \mathcal{B} . This is precisely the collection of sets in \mathcal{T} . So \mathcal{T} is a topology on X.

() Introduction to Topology May 29, 2016 10