Introduction to Topology

Chapter 2. Topological Spaces and Continuous Functions Section 13. Basis for a Topology—Proofs of Theorems

Table of contents

[Lemma 13.1](#page-8-0)

[Lemma 13.4](#page-28-0)

[Theorem 13.B](#page-35-0)

Theorem 13.A. Let β be a basis for a topology on X. Define

 $\mathcal{T} = \{U \subset X \mid x \in U \text{ implies } x \in B \subset U \text{ for some } B \in \mathcal{B}\},\$

the "topology" generated be B. Then T is in fact a topology on X.

Proof. We consider the definition of "topology."

Theorem 13.A. Let β be a basis for a topology on X. Define

 $\mathcal{T} = \{U \subset X \mid x \in U \text{ implies } x \in B \subset U \text{ for some } B \in \mathcal{B}\},\$

the "topology" generated be $\mathcal B$. Then $\mathcal T$ is in fact a topology on X .

Proof. We consider the definition of "topology."

(1) $\emptyset \in \mathcal{T}$ vacuously. Now $X \in \mathcal{T}$ since each $x \in X$ satisfies $x \in B \subset X$ for some $B \in B$ by the definition of topology generated by B.

Theorem 13.A. Let β be a basis for a topology on X. Define

 $\mathcal{T} = \{U \subset X \mid x \in U \text{ implies } x \in B \subset U \text{ for some } B \in \mathcal{B}\},\$

the "topology" generated be B. Then T is in fact a topology on X.

Proof. We consider the definition of "topology."

- (1) $\emptyset \in \mathcal{T}$ vacuously. Now $X \in \mathcal{T}$ since each $x \in X$ satisfies $x \in B \subset X$ for some $B \in B$ by the definition of topology generated by B .
- (2) Let $\{U_{\alpha}\}_{{\alpha}\in J}$ be an arbitrary collection of elements of T. Let $U = \bigcup_{\alpha \in I} U_{\alpha}$. For $x \in U$ we have $x \in U_{\alpha}$ for some $\alpha \in J$. Since $U_{\alpha} \in \mathcal{T}$, then by the definition of "topology generated" by B," $x \in B \subset U_\alpha$ for some $B \in \mathcal{B}$. So $x \in B \subset U$ and hence by definition U is open.

Theorem 13.A. Let β be a basis for a topology on X. Define

 $\mathcal{T} = \{U \subset X \mid x \in U \text{ implies } x \in B \subset U \text{ for some } B \in \mathcal{B}\},\$

the "topology" generated be B. Then T is in fact a topology on X.

Proof. We consider the definition of "topology."

- (1) $\emptyset \in \mathcal{T}$ vacuously. Now $X \in \mathcal{T}$ since each $x \in X$ satisfies $x \in B \subset X$ for some $B \in \mathcal{B}$ by the definition of topology generated by B .
- (2) Let ${U_\alpha}_{\alpha\in J}$ be an arbitrary collection of elements of T. Let $U = \bigcup_{\alpha \in I} U_{\alpha}$. For $x \in U$ we have $x \in U_{\alpha}$ for some $\alpha \in J$. Since $U_{\alpha} \in \mathcal{T}$, then by the definition of "topology generated by B," $x \in B \subset U_{\alpha}$ for some $B \in \mathcal{B}$. So $x \in B \subset U$ and hence by definition U is open.

Theorem 13.A (continued)

Theorem 13.A. Let β be a basis for a topology on X. Define

 $\mathcal{T} = \{U \subset X \mid x \in U \text{ implies } x \in B \subset U \text{ for some } B \in \mathcal{B}\},\$

the "topology" generated be \mathcal{B} . Then $\mathcal T$ is in fact a topology on X.

Proof (continued).

(3) Let $U_1, U_2 \in \mathcal{T}$. For $x \in U_1 \cap U_2$, by the definition of "topology generated by B," there is $B_1 \subset U_1$ and $B_2 \subset U_2$ with $B_1, B_2 \in \mathcal{B}$ and $x \in B_1, x \in B_2$. By part (2) of the definition of "basis for a topology," there is $B_3 \in \mathcal{B}$ with $x \in B_3$ and $B_3 \subset B_1 \cap B_2 \subset U_1 \cap U_2$. Hence $U_1 \cap U_2 \in \mathcal{T}$. Next, by mathematical induction, any finite collection $\{U_1,U_2,\ldots,U_n\}\subset\mathcal{T}$ satisfies $U_1\cap U_2\cap\cdots\cap U_n\in\mathcal{T}$.

So T satisfies the definition of topology and T is a topology on X.

Theorem 13.A (continued)

Theorem 13.A. Let β be a basis for a topology on X. Define

 $\mathcal{T} = \{U \subset X \mid x \in U \text{ implies } x \in B \subset U \text{ for some } B \in \mathcal{B}\},\$

the "topology" generated be \mathcal{B} . Then $\mathcal T$ is in fact a topology on X.

Proof (continued).

(3) Let $U_1, U_2 \in \mathcal{T}$. For $x \in U_1 \cap U_2$, by the definition of "topology generated by B," there is $B_1 \subset U_1$ and $B_2 \subset U_2$ with $B_1, B_2 \in \mathcal{B}$ and $x \in B_1, x \in B_2$. By part (2) of the definition of "basis for a topology," there is $B_3 \in \mathcal{B}$ with $x \in B_3$ and $B_3 \subset B_1 \cap B_2 \subset U_1 \cap U_2$. Hence $U_1 \cap U_2 \in \mathcal{T}$. Next, by mathematical induction, any finite collection $\{U_1,U_2,\ldots,U_n\}\subset\mathcal{T}$ satisfies $U_1\cap U_2\cap\cdots\cap U_n\in\mathcal{T}$.

So T satisfies the definition of topology and T is a topology on X.

Lemma 13.1. Let X be a set and let B be a basis for a topology T on X. Then T equals the collection of all unions of elements of B .

Proof. As stated in Theorem 13.A above, all elements of β are open and so in \mathcal{T} .

Lemma 13.1. Let X be a set and let B be a basis for a topology T on X. Then $\mathcal T$ equals the collection of all unions of elements of $\mathcal B$.

Proof. As stated in Theorem 13.A above, all elements of β are open and so in T. Since T is a topology, then by part (2) of the definition of "topology," any union of elements of β are in T. So T contains all unions of elements of B.

Lemma 13.1. Let X be a set and let B be a basis for a topology T on X. Then $\mathcal T$ equals the collection of all unions of elements of $\mathcal B$.

Proof. As stated in Theorem 13.A above, all elements of β are open and so in T. Since T is a topology, then by part (2) of the definition of "topology," any union of elements of β are in $\mathcal T$. So $\mathcal T$ contains all unions of elements of B .

Next, suppose $U \in \mathcal{T}$. For each $x \in U$ choose $B_x \in \mathcal{B}$ such that $x \in B_x \subset U$ (which can be done by the definition of "topology T generated by \mathcal{B} ").

Lemma 13.1. Let X be a set and let B be a basis for a topology T on X. Then $\mathcal T$ equals the collection of all unions of elements of $\mathcal B$.

Proof. As stated in Theorem 13.A above, all elements of β are open and so in T. Since T is a topology, then by part (2) of the definition of "topology," any union of elements of β are in $\mathcal T$. So $\mathcal T$ contains all unions of elements of B .

Next, suppose $U \in \mathcal{T}$. For each $x \in U$ choose $B_x \in \mathcal{B}$ such that $x \in B_{x} \subset U$ (which can be done by the definition of "topology T **generated by B").** Then $U = \bigcup_{x \in U} B_x$, so U equals a union of elements of B. Since U is an arbitrary element of T, then all elements of T are unions of elements of β and the result follows.

Lemma 13.1. Let X be a set and let B be a basis for a topology T on X. Then $\mathcal T$ equals the collection of all unions of elements of $\mathcal B$.

Proof. As stated in Theorem 13.A above, all elements of β are open and so in T. Since T is a topology, then by part (2) of the definition of "topology," any union of elements of β are in $\mathcal T$. So $\mathcal T$ contains all unions of elements of B .

Next, suppose $U \in \mathcal{T}$. For each $x \in U$ choose $B_x \in \mathcal{B}$ such that $x \in B_{x} \subset U$ (which can be done by the definition of "topology T generated by B"). Then $U = \bigcup_{x \in U} B_x$, so U equals a union of elements of B. Since U is an arbitrary element of T, then all elements of T are unions of elements of β and the result follows.

Lemma 13.2. Let (X, \mathcal{T}) be a topological space. Suppose that C is a collection of open sets of X such that for each open subset $U \subset X$ and each $x \in U$, there is an element $C \in \mathcal{C}$ such that $x \in C \subset U$. Then \mathcal{C} is a basis for the topology T on X.

Proof. First we show that $\mathcal C$ is a basis.

Lemma 13.2. Let (X, \mathcal{T}) be a topological space. Suppose that C is a collection of open sets of X such that for each open subset $U \subset X$ and each $x \in U$, there is an element $C \in \mathcal{C}$ such that $x \in C \subset U$. Then \mathcal{C} is a basis for the topology T on X.

Proof. First we show that $\mathcal C$ is a basis. For the first part of the definition of basis, for $x \in X$ (since X itself is an open set) then (by hypothesis) there is $X \in \mathcal{C}$ such that $x \in \mathcal{C} \subset X$.

Lemma 13.2. Let (X, \mathcal{T}) be a topological space. Suppose that C is a collection of open sets of X such that for each open subset $U \subset X$ and each $x \in U$, there is an element $C \in \mathcal{C}$ such that $x \in C \subset U$. Then \mathcal{C} is a basis for the topology T on X.

Proof. First we show that C is a basis. For the first part of the definition of basis, for $x \in X$ (since X itself is an open set) then (by hypothesis) there is $X \in \mathcal{C}$ such that $x \in \mathcal{C} \subset X$. For the second part of the definition of basis, let $x \in C_1 \cap C_2$ where $C_1, C_2 \in \mathcal{C}$. Since C_1 and C_2 are open then so is $C_1 \cap C_2$ by part (3) of the definition of topology. Then by hypothesis there is $C_3 \in \mathcal{C}$ such that $x \in C_3 \subset C_1 \cap C_2$.

Lemma 13.2. Let (X, \mathcal{T}) be a topological space. Suppose that C is a collection of open sets of X such that for each open subset $U \subset X$ and each $x \in U$, there is an element $C \in \mathcal{C}$ such that $x \in C \subset U$. Then \mathcal{C} is a basis for the topology T on X.

Proof. First we show that C is a basis. For the first part of the definition of basis, for $x \in X$ (since X itself is an open set) then (by hypothesis) there is $X \in \mathcal{C}$ such that $x \in \mathcal{C} \subset X$. For the second part of the definition of basis, let $x \in C_1 \cap C_2$ where $C_1, C_2 \in \mathcal{C}$. Since C_1 and C_2 are open then so is $C_1 \cap C_2$ by part (3) of the definition of topology. Then by hypothesis there is $C_3 \in \mathcal{C}$ such that $x \in C_3 \subset C_1 \cap C_2$. So both parts of the definition of basis are satisfied and C is a basis for a topology on X.

Lemma 13.2. Let (X, \mathcal{T}) be a topological space. Suppose that C is a collection of open sets of X such that for each open subset $U \subset X$ and each $x \in U$, there is an element $C \in \mathcal{C}$ such that $x \in C \subset U$. Then \mathcal{C} is a basis for the topology T on X.

Proof. First we show that C is a basis. For the first part of the definition of basis, for $x \in X$ (since X itself is an open set) then (by hypothesis) there is $X \in \mathcal{C}$ such that $x \in \mathcal{C} \subset X$. For the second part of the definition of basis, let $x \in C_1 \cap C_2$ where $C_1, C_2 \in \mathcal{C}$. Since C_1 and C_2 are open then so is $C_1 \cap C_2$ by part (3) of the definition of topology. Then by hypothesis there is $C_3 \in \mathcal{C}$ such that $x \in C_3 \subset C_1 \cap C_2$. So both parts of the definition of basis are satisfied and C is a basis for a topology on X.

Lemma 13.2. Let (X, \mathcal{T}) be a topological space. Suppose that C is a collection of open sets of X such that for each open subset $U \subset X$ and each $x \in U$, there is an element $C \in \mathcal{C}$ such that $x \in C \subset U$. Then \mathcal{C} is a basis for the topology T on X.

Proof (continued). Let T' be the topology on X generated by $\mathcal C$ (we **now show that** $\mathcal{T} = \mathcal{T}^{\prime}$ **).** First, if $U \in \mathcal{T}$ and $x \in U$, then since $\mathcal C$ is a basis for topology T, there is $C \in \mathcal{C}$ such that $x \in C \subset U$. So, by the definition of "topology generated by" $\mathcal{C}, \ U$ is in \mathcal{T}' and hence $\mathcal{T} \subset \mathcal{T}'.$

Lemma 13.2. Let (X, \mathcal{T}) be a topological space. Suppose that C is a collection of open sets of X such that for each open subset $U \subset X$ and each $x \in U$, there is an element $C \in \mathcal{C}$ such that $x \in C \subset U$. Then \mathcal{C} is a basis for the topology T on X.

Proof (continued). Let T' be the topology on X generated by $\mathcal C$ (we now show that $\mathcal{T} = \mathcal{T}^{\prime}$). First, if $U \in \mathcal{T}$ and $x \in U$, then since $\mathcal C$ is a basis for topology T, there is $C \in \mathcal{C}$ such that $x \in C \subset U$. So, by the definition of "topology generated by" $\mathcal{C},\ U$ is in \mathcal{T}' and hence $\mathcal{T}\subset \mathcal{T}'$. Conversely, if W belongs to T' then W is a union of elements of C by Lemma 13.1. Now each element of C is an element of T (see the comment at the end of the definition of "topology generated by") and a union of open sets is open (definition of topology, part (2)) so W belongs to T. That is, $T' \subset T$.

Lemma 13.2. Let (X, \mathcal{T}) be a topological space. Suppose that C is a collection of open sets of X such that for each open subset $U \subset X$ and each $x \in U$, there is an element $C \in \mathcal{C}$ such that $x \in C \subset U$. Then \mathcal{C} is a basis for the topology T on X.

Proof (continued). Let T' be the topology on X generated by $\mathcal C$ (we now show that $\mathcal{T} = \mathcal{T}^{\prime}$). First, if $U \in \mathcal{T}$ and $x \in U$, then since $\mathcal C$ is a basis for topology T, there is $C \in \mathcal{C}$ such that $x \in C \subset U$. So, by the definition of "topology generated by" $\mathcal{C},\ U$ is in \mathcal{T}' and hence $\mathcal{T}\subset \mathcal{T}'.$ Conversely, if W belongs to T' then W is a union of elements of C by Lemma 13.1. Now each element of C is an element of T (see the comment at the end of the definition of "topology generated by") and a union of open sets is open (definition of topology, part (2)) so W belongs to T. That is, $\mathcal{T}' \subset \mathcal{T}$. Therefore, $\mathcal{T} = \mathcal{T}'$.

Lemma 13.2. Let (X, \mathcal{T}) be a topological space. Suppose that C is a collection of open sets of X such that for each open subset $U \subset X$ and each $x \in U$, there is an element $C \in \mathcal{C}$ such that $x \in C \subset U$. Then \mathcal{C} is a basis for the topology T on X.

Proof (continued). Let T' be the topology on X generated by $\mathcal C$ (we now show that $\mathcal{T} = \mathcal{T}^{\prime}$). First, if $U \in \mathcal{T}$ and $x \in U$, then since $\mathcal C$ is a basis for topology T, there is $C \in \mathcal{C}$ such that $x \in C \subset U$. So, by the definition of "topology generated by" $\mathcal{C},\ U$ is in \mathcal{T}' and hence $\mathcal{T}\subset \mathcal{T}'.$ Conversely, if W belongs to T' then W is a union of elements of C by Lemma 13.1. Now each element of C is an element of T (see the comment at the end of the definition of "topology generated by") and a union of open sets is open (definition of topology, part (2)) so W belongs to T. That is, $T' \subset T$. Therefore, $T = T'$.

Lemma 13.3. Let $\mathcal B$ and $\mathcal B'$ be bases for topologies $\mathcal T$ and $\mathcal T',$ respectively, on X . Then the following are equivalent:

- (1) T' is finer than T .
- (2) For each $x \in X$ and each basis element $B \in \mathcal{B}$ containing x, there is a basis element $B'\in\mathcal{B}$ such that $x\in B'\subset B.$

Proof. (2) \Rightarrow (1) Given $U \in \mathcal{T}$, let $x \in U$.

Lemma 13.3. Let $\mathcal B$ and $\mathcal B'$ be bases for topologies $\mathcal T$ and $\mathcal T',$ respectively, on X . Then the following are equivalent:

- (1) T' is finer than T .
- (2) For each $x \in X$ and each basis element $B \in \mathcal{B}$ containing x, there is a basis element $B'\in\mathcal{B}$ such that $x\in B'\subset B.$

Proof. (2)⇒(1) Given $U \in \mathcal{T}$, let $x \in U$. Since B generates \mathcal{T} , there is $B \in \mathcal{B}$ such that $x \in \mathcal{C} \subset U$. By hypothesis (2), there is $B' \in \mathcal{B}'$ such that $x \in B' \subset \mathcal{B}.$

Lemma 13.3. Let $\mathcal B$ and $\mathcal B'$ be bases for topologies $\mathcal T$ and $\mathcal T',$ respectively, on X . Then the following are equivalent:

(1) T' is finer than T .

(2) For each $x \in X$ and each basis element $B \in \mathcal{B}$ containing x, there is a basis element $B'\in\mathcal{B}$ such that $x\in B'\subset B.$

Proof. (2)⇒(1) Given $U \in \mathcal{T}$, let $x \in U$. Since B generates \mathcal{T} , there is $B\in \mathcal{B}$ such that $x\in \mathcal{C}\subset U.$ By hypothesis (2), there is $B'\in \mathcal{B}'$ such that $x \in B' \subset \mathcal{B}$. Then $x \in B' \subset U$ and by the definition of "topology generated by" \mathcal{B}' , we have $U \in \mathcal{T}'$. So $\mathcal{T} \subset \mathcal{T}'$ and (1) follows.

Lemma 13.3. Let $\mathcal B$ and $\mathcal B'$ be bases for topologies $\mathcal T$ and $\mathcal T',$ respectively, on X . Then the following are equivalent:

- (1) T' is finer than T .
- (2) For each $x \in X$ and each basis element $B \in \mathcal{B}$ containing x, there is a basis element $B'\in\mathcal{B}$ such that $x\in B'\subset B.$

Proof. (2)⇒(1) Given $U \in \mathcal{T}$, let $x \in U$. Since B generates \mathcal{T} , there is $B\in \mathcal{B}$ such that $x\in \mathcal{C}\subset U.$ By hypothesis (2), there is $B'\in \mathcal{B}'$ such that $x \in B' \subset \mathcal{B}$. Then $x \in B' \subset U$ and by the definition of "topology generated by" \mathcal{B}^\prime , we have $U\in\mathcal{T}^\prime.$ So $\mathcal{T}\subset\mathcal{T}^\prime$ and (1) follows.

 $(1) \Rightarrow (2)$ Let $x \in X$ and $B \in \mathcal{B}$ where $x \in B$. Since \mathcal{B} generates \mathcal{T} , then $B \in \mathcal{T}$.

Lemma 13.3. Let $\mathcal B$ and $\mathcal B'$ be bases for topologies $\mathcal T$ and $\mathcal T',$ respectively, on X . Then the following are equivalent:

- (1) T' is finer than T .
- (2) For each $x \in X$ and each basis element $B \in \mathcal{B}$ containing x, there is a basis element $B'\in\mathcal{B}$ such that $x\in B'\subset B.$

Proof. (2)⇒(1) Given $U \in \mathcal{T}$, let $x \in U$. Since B generates \mathcal{T} , there is $B\in \mathcal{B}$ such that $x\in \mathcal{C}\subset U.$ By hypothesis (2), there is $B'\in \mathcal{B}'$ such that $x \in B' \subset \mathcal{B}$. Then $x \in B' \subset U$ and by the definition of "topology generated by" \mathcal{B}^\prime , we have $U\in\mathcal{T}^\prime.$ So $\mathcal{T}\subset\mathcal{T}^\prime$ and (1) follows.

 $(1) \Rightarrow (2)$ Let $x \in X$ and $B \in \mathcal{B}$ where $x \in B$. Since \mathcal{B} generates \mathcal{T} , then $\bm{B}\in\bm{\mathcal{T}}.$ By hypothesis $(1),\ \mathcal{T}\subset \mathcal{T}'$ and so $B\in \mathcal{T}'.$ Since \mathcal{T}' is generated by \mathcal{B}' , there is (by definition) $B' \in \mathcal{B}''$ such that $x \in B' \subset B$ and (2) follows.

Lemma 13.3. Let $\mathcal B$ and $\mathcal B'$ be bases for topologies $\mathcal T$ and $\mathcal T',$ respectively, on X . Then the following are equivalent:

- (1) T' is finer than T .
- (2) For each $x \in X$ and each basis element $B \in \mathcal{B}$ containing x, there is a basis element $B'\in\mathcal{B}$ such that $x\in B'\subset B.$

Proof. (2)⇒(1) Given $U \in \mathcal{T}$, let $x \in U$. Since B generates \mathcal{T} , there is $B\in \mathcal{B}$ such that $x\in \mathcal{C}\subset U.$ By hypothesis (2), there is $B'\in \mathcal{B}'$ such that $x \in B' \subset \mathcal{B}$. Then $x \in B' \subset U$ and by the definition of "topology generated by" \mathcal{B}^\prime , we have $U\in\mathcal{T}^\prime.$ So $\mathcal{T}\subset\mathcal{T}^\prime$ and (1) follows.

 $(1) \Rightarrow (2)$ Let $x \in X$ and $B \in \mathcal{B}$ where $x \in B$. Since \mathcal{B} generates \mathcal{T} , then $B \in \mathcal{T}$. By hypothesis $(1),\; \mathcal{T} \subset \mathcal{T}'$ and so $B \in \mathcal{T}'$. Since \mathcal{T}' is generated by \mathcal{B}' , there is (by definition) $B' \in \mathcal{B}''$ such that $x \in B' \subset B$ and (2) follows.

Lemma 13.4. The topologies of \mathbb{R}_ℓ and \mathbb{R}_K are each strictly finer than the standard topology on \mathbb{R} , but are not comparable with one another.

Proof. Let T, T', and T" be the topologies of \mathbb{R} , \mathbb{R}_{ℓ} , and \mathbb{R}_{K} , respectively.

Lemma 13.4. The topologies of \mathbb{R}_{ℓ} and \mathbb{R}_{K} are each strictly finer than the standard topology on \mathbb{R} , but are not comparable with one another.

Proof. Let T , T' , and T'' be the topologies of \mathbb{R} , \mathbb{R}_{ℓ} , and \mathbb{R}_{K} , **respectively.** Given a basis element (a, b) for T and $x \in (a, b)$, the basis element $[x, b) \in \mathcal{T}'$ contains x and satisfies $[x, b) \subset (a, b)$.

Lemma 13.4. The topologies of \mathbb{R}_{ℓ} and \mathbb{R}_{K} are each strictly finer than the standard topology on \mathbb{R} , but are not comparable with one another.

Proof. Let T , T' , and T'' be the topologies of \mathbb{R} , \mathbb{R}_{ℓ} , and \mathbb{R}_{K} , respectively. Given a basis element (a, b) for T and $x \in (a, b)$, the basis element $[x,b)\in \mathcal{T}'$ contains x and satisfies $[x,b)\subset (a,b).$ On the other hand, given basis element $[x, b)$ for T' , there is no open interval (a, b) containing x which is a subset of $[x, d)$. Therefore \mathcal{T}' is strictly finer than T by Lemma 13.2.

Lemma 13.4. The topologies of \mathbb{R}_ℓ and \mathbb{R}_K are each strictly finer than the standard topology on \mathbb{R} , but are not comparable with one another.

Proof. Let T , T' , and T'' be the topologies of \mathbb{R} , \mathbb{R}_{ℓ} , and \mathbb{R}_{K} , respectively. Given a basis element (a, b) for T and $x \in (a, b)$, the basis element $[x,b)\in \mathcal{T}'$ contains x and satisfies $[x,b)\subset (a,b).$ On the other hand, given basis element $[x, b)$ for \mathcal{T}' , there is no open interval (a, b) containing x which is a subset of $[x,d)$. Therefore \mathcal{T}' is strictly finer than T by Lemma 13.2.

Given a basis element (a, b) for T and $x \in (a, b)$, the same basis element $(a, b) \in T'$ contains x and satisfies $(a, b) \subset (a, b)$.

Lemma 13.4. The topologies of \mathbb{R}_ℓ and \mathbb{R}_K are each strictly finer than the standard topology on \mathbb{R} , but are not comparable with one another.

Proof. Let T , T' , and T'' be the topologies of \mathbb{R} , \mathbb{R}_{ℓ} , and \mathbb{R}_{K} , respectively. Given a basis element (a, b) for T and $x \in (a, b)$, the basis element $[x,b)\in \mathcal{T}'$ contains x and satisfies $[x,b)\subset (a,b).$ On the other hand, given basis element $[x, b)$ for \mathcal{T}' , there is no open interval (a, b) containing x which is a subset of $[x,d)$. Therefore \mathcal{T}' is strictly finer than T by Lemma 13.2.

Given a basis element (a, b) for T and $x \in (a, b)$, the same basis element $(a, b) \in \mathcal{T}'$ contains x and satisfies $(a, b) \subset (a, b)$. On the other hand, the basis element $B=(-1,0)\setminus K$ for T'' contains the point 0, but there is no open interval (a, b) containing 0 which is a subset of B . Therefore \mathcal{T}'' is strictly finer than T by lemma 13.2.

Lemma 13.4. The topologies of \mathbb{R}_ℓ and \mathbb{R}_K are each strictly finer than the standard topology on \mathbb{R} , but are not comparable with one another.

Proof. Let T , T' , and T'' be the topologies of \mathbb{R} , \mathbb{R}_{ℓ} , and \mathbb{R}_{K} , respectively. Given a basis element (a, b) for T and $x \in (a, b)$, the basis element $[x,b)\in \mathcal{T}'$ contains x and satisfies $[x,b)\subset (a,b).$ On the other hand, given basis element $[x, b)$ for \mathcal{T}' , there is no open interval (a, b) containing x which is a subset of $[x,d)$. Therefore \mathcal{T}' is strictly finer than T by Lemma 13.2.

Given a basis element (a, b) for T and $x \in (a, b)$, the same basis element $(a, b) \in \mathcal{T}'$ contains x and satisfies $(a, b) \subset (a, b)$. On the other hand, the basis element $B=(-1,0)\setminus \overline{K}$ for \mathcal{T}'' contains the point 0, but there is no open interval (a,b) containing 0 which is a subset of $B.$ Therefore \mathcal{T}'' is strictly finer than T by lemma 13.2.

In Exercise 13.6 you will show that topologies \mathcal{T}' and \mathcal{T}'' are not comparable.

Lemma 13.4. The topologies of \mathbb{R}_ℓ and \mathbb{R}_K are each strictly finer than the standard topology on \mathbb{R} , but are not comparable with one another.

Proof. Let T , T' , and T'' be the topologies of \mathbb{R} , \mathbb{R}_{ℓ} , and \mathbb{R}_{K} , respectively. Given a basis element (a, b) for T and $x \in (a, b)$, the basis element $[x,b)\in \mathcal{T}'$ contains x and satisfies $[x,b)\subset (a,b).$ On the other hand, given basis element $[x, b)$ for \mathcal{T}' , there is no open interval (a, b) containing x which is a subset of $[x,d)$. Therefore \mathcal{T}' is strictly finer than T by Lemma 13.2.

Given a basis element (a, b) for T and $x \in (a, b)$, the same basis element $(a, b) \in \mathcal{T}'$ contains x and satisfies $(a, b) \subset (a, b)$. On the other hand, the basis element $B=(-1,0)\setminus \overline{K}$ for \mathcal{T}'' contains the point 0, but there is no open interval (a,b) containing 0 which is a subset of $B.$ Therefore \mathcal{T}'' is strictly finer than T by lemma 13.2.

In Exercise 13.6 you will show that topologies \mathcal{T}' and \mathcal{T}'' are not comparable.

Theorem 13.B. Let S be a subbasis for a topology on X. Define T to be all unions of finite intersections of elements of S. Then T is a topology on X.

Proof. Let β be the set of all finite intersections of elements of β :

$$
\mathcal{B} = \{S_1 \cap S_s \cap \cdots \cap S_n \mid n \in \mathbb{N}; S_1, S_2, \ldots, S_n \in \mathcal{S}\}.
$$

Theorem 13.B. Let S be a subbasis for a topology on X. Define T to be all unions of finite intersections of elements of S. Then T is a topology on X.

Proof. Let β be the set of all finite intersections of elements of β :

$$
\mathcal{B} = \{S_1 \cap S_s \cap \cdots \cap S_n \mid n \in \mathbb{N}; S_1, S_2, \ldots, S_n \in \mathcal{S}\}.
$$

Let $x \in X$. Then $x \in S$ for some $S \in S$ by the definition of subbasis, and so $x \in S$ where $S \in \mathcal{B}$. S part (1) of the definition of " \mathcal{B} is a basis" is satisfied.

Theorem 13.B. Let S be a subbasis for a topology on X. Define T to be all unions of finite intersections of elements of S. Then T is a topology on X.

Proof. Let β be the set of all finite intersections of elements of β :

$$
\mathcal{B} = \{S_1 \cap S_s \cap \cdots \cap S_n \mid n \in \mathbb{N}; S_1, S_2, \ldots, S_n \in \mathcal{S}\}.
$$

Let $x \in X$. Then $x \in S$ for some $S \in S$ by the definition of subbasis, and so $x \in S$ where $S \in \mathcal{B}$. S part (1) of the definition of " \mathcal{B} is a basis" is **satisfied.** Now let $B_1, B_2 \in \mathcal{B}$. Then $B_1 = S_2 \cap S_2 \cap \cdots \cap S_m$ and $B_2 = S'_1 \cap S'_2 \cap \cdots \cap S'_n \in \mathcal{B}$ and $B_2 \subset B_1 \cap B_2$ so that part (2) of the definition of "B is a basis" is satisfied and so B is a basis for a topology on X_{1}

Theorem 13.B. Let S be a subbasis for a topology on X. Define T to be all unions of finite intersections of elements of S. Then T is a topology on X.

Proof. Let β be the set of all finite intersections of elements of β :

$$
\mathcal{B} = \{S_1 \cap S_s \cap \cdots \cap S_n \mid n \in \mathbb{N}; S_1, S_2, \ldots, S_n \in \mathcal{S}\}.
$$

Let $x \in X$. Then $x \in S$ for some $S \in S$ by the definition of subbasis, and so $x \in S$ where $S \in \mathcal{B}$. S part (1) of the definition of "B is a basis" is satisfied. Now let $B_1, B_2 \in \mathcal{B}$. Then $B_1 = S_2 \cap S_2 \cap \cdots \cap S_m$ and $B_2 = S_1' \cap S_2' \cap \cdots \cap S_n' \in \mathcal{B}$ and $B_2 \subset B_1 \cap B_2$ so that part (2) of the definition of " β is a basis" is satisfied and so β is a basis for a topology on **X**. The topology for which B is a basis is, by Lemma 13.1, the topology consisting of all unions of elements of β . This is precisely the collection of sets in T. So T is a topology on X.

Theorem 13.B. Let S be a subbasis for a topology on X. Define T to be all unions of finite intersections of elements of S. Then T is a topology on X.

Proof. Let β be the set of all finite intersections of elements of β :

$$
\mathcal{B} = \{S_1 \cap S_s \cap \cdots \cap S_n \mid n \in \mathbb{N}; S_1, S_2, \ldots, S_n \in \mathcal{S}\}.
$$

Let $x \in X$. Then $x \in S$ for some $S \in S$ by the definition of subbasis, and so $x \in S$ where $S \in \mathcal{B}$. S part (1) of the definition of "B is a basis" is satisfied. Now let $B_1, B_2 \in \mathcal{B}$. Then $B_1 = S_2 \cap S_2 \cap \cdots \cap S_m$ and $B_2 = S_1' \cap S_2' \cap \cdots \cap S_n' \in \mathcal{B}$ and $B_2 \subset B_1 \cap B_2$ so that part (2) of the definition of " β is a basis" is satisfied and so β is a basis for a topology on X. The topology for which B is a basis is, by Lemma 13.1, the topology consisting of all unions of elements of β . This is precisely the collection of sets in T. So T is a topology on X.