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Theorem

Theorem 13.A

Theorem 13.A. Let B be a basis for a topology on X . Define

T = {U ⊂ X | x ∈ U implies x ∈ B ⊂ U for some B ∈ B},

the “topology” generated be B. Then T is in fact a topology on X .

Proof. We consider the definition of “topology.”

(1) ∅ ∈ T vacuously. Now X ∈ T since each x ∈ X satisfies
x ∈ B ⊂ X for some B ∈ B by the definition of topology
generated by B.

(2) Let {Uα}α∈J be an arbitrary collection of elements of T . Let
U = ∪α∈JUα. For x ∈ U we have x ∈ Uα for some α ∈ J.
Since Uα ∈ T , then by the definition of “topology generated
by B,” x ∈ B ⊂ Uα for some B ∈ B. So x ∈ B ⊂ U and
hence by definition U is open.
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Theorem

Theorem 13.A (continued)

Theorem 13.A. Let B be a basis for a topology on X . Define

T = {U ⊂ X | x ∈ U implies x ∈ B ⊂ U for some B ∈ B},

the “topology” generated be B. Then T is in fact a topology on X .

Proof (continued).

(3) Let U1,U2 ∈ T . For x ∈ U1 ∩ U2, by the definition of
“topology generated by B,” there is B1 ⊂ U1 and B2 ⊂ U2

with B1,B2 ∈ B and x ∈ B1, x ∈ B2. By part (2) of the
definition of “basis for a topology,” there is B3 ∈ B with
x ∈ B3 and B3 ⊂ B1 ∩ B2 ⊂ U1 ∩ U2. Hence U1 ∩ U2 ∈ T .
Next, by mathematical induction, any finite collection
{U1,U2, . . . ,Un} ⊂ T satisfies U1 ∩ U2 ∩ · · · ∩ Un ∈ T .

So T satisfies the definition of topology and T is a topology on X .

() Introduction to Topology May 29, 2016 4 / 10



Theorem

Theorem 13.A (continued)

Theorem 13.A. Let B be a basis for a topology on X . Define

T = {U ⊂ X | x ∈ U implies x ∈ B ⊂ U for some B ∈ B},

the “topology” generated be B. Then T is in fact a topology on X .

Proof (continued).

(3) Let U1,U2 ∈ T . For x ∈ U1 ∩ U2, by the definition of
“topology generated by B,” there is B1 ⊂ U1 and B2 ⊂ U2

with B1,B2 ∈ B and x ∈ B1, x ∈ B2. By part (2) of the
definition of “basis for a topology,” there is B3 ∈ B with
x ∈ B3 and B3 ⊂ B1 ∩ B2 ⊂ U1 ∩ U2. Hence U1 ∩ U2 ∈ T .
Next, by mathematical induction, any finite collection
{U1,U2, . . . ,Un} ⊂ T satisfies U1 ∩ U2 ∩ · · · ∩ Un ∈ T .

So T satisfies the definition of topology and T is a topology on X .

() Introduction to Topology May 29, 2016 4 / 10



Lemma 13.1

Lemma 13.1

Lemma 13.1. Let X be a set and let B be a basis for a topology T on X .
Then T equals the collection of all unions of elements of B.

Proof. As stated in Theorem 13.A above, all elements of B are open and
so in T .

Since T is a topology, then by part (2) of the definition of
“topology,” any union of elements of B are in T . So T contains all unions
of elements of B.

Next, suppose U ∈ T . For each x ∈ U choose Bx ∈ B such that
x ∈ Bx ⊂ U (which can be done by the definition of “topology T
generated by B”). Then U = ∪x∈UBx , so U equals a union of elements of
B. Since U is an arbitrary element of T , then all elements of T are unions
of elements of B and the result follows.
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Lemma 13.2

Lemma 13.2

Lemma 13.2. Let (X , T ) be a topological space. Suppose that C is a
collection of open sets of X such that for each open subset U ⊂ X and
each x ∈ U, there is an element C ∈ C such that x ∈ C ⊂ U. Then C is a
basis for the topology T on X .

Proof. First we show that C is a basis.

For the first part of the definition
of basis, for x ∈ X (since X itself is an open set) then (by hypothesis)
there is X ∈ C such that x ∈ C ⊂ X . For the second part of the definition
of basis, let x ∈ C1 ∩ C2 where C1,C2 ∈ C. Since C1 and C2 are open then
so is C1 ∩ C2 by part (3) of the definition of topology. Then by hypothesis
there is C3 ∈ C such that x ∈ C3 ⊂ C1 ∩ C2. So both parts of the
definition of basis are satisfied and C is a basis for a topology on X .
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Lemma 13.2

Lemma 13.2 (continued)

Lemma 13.2. Let (X , T ) be a topological space. Suppose that C is a
collection of open sets of X such that for each open subset U ⊂ X and
each x ∈ U, there is an element C ∈ C such that x ∈ C ⊂ U. Then C is a
basis for the topology T on X .

Proof (continued). Let T ′ be the topology on X generated by C (we
now show that T = T ′). First, if U ∈ T and x ∈ U, then since C is a basis
for topology T , there is C ∈ C such that x ∈ C ⊂ U. So, by the definition
of “topology generated by” C, U is in T ′ and hence T ⊂ T ′.

Conversely, if
W belongs to T ′ then W is a union of elements of C by Lemma 13.1.
Now each element of C is an element of T (see the comment at the end of
the definition of “topology generated by”) and a union of open sets is
open (definition of topology, part (2)) so W belongs to T . That is,
T ′ ⊂ T . Therefore, T = T ′.
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Lemma 13.3

Lemma 13.3

Lemma 13.3. Let B and B′ be bases for topologies T and T ′,
respectively, on X . Then the following are equivalent:

(1) T ′ is finer than T .

(2) For each x ∈ X and each basis element B ∈ B containing x ,
there is a basis element B ′ ∈ B such that x ∈ B ′ ⊂ B.

Proof. (2)⇒(1) Given U ∈ T , let x ∈ U.

Since B generates T , there is
B ∈ B such that x ∈ C ⊂ U. By hypothesis (2), there is B ′ ∈ B′ such that
x ∈ B ′ ⊂ B. Then x ∈ B ′ ⊂ U and by the definition of “topology
generated by” B′, we have U ∈ T ′. So T ⊂ T ′ and (1) follows.

(1)⇒(2) Let x ∈ X and B ∈ B where x ∈ B. Since B generates T , then
B ∈ T . By hypothesis (1), T ⊂ T ′ and so B ∈ T ′. Since T ′ is generated
by B′, there is (by definition) B ′ ∈ B′′ such that x ∈ B ′ ⊂ B and (2)
follows.
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Lemma 13.4

Lemma 13.4

Lemma 13.4. The topologies of R` and RK are each strictly finer than
the standard topology on R, but are not comparable with one another.

Proof. Let T , T ′, and T ′′ be the topologies of R, R`, and RK ,
respectively.

Given a basis element (a, b) for T and x ∈ (a, b), the basis
element [x , b) ∈ T ′ contains x and satisfies [x , b) ⊂ (a, b). On the other
hand, given basis element [x , b) for T ′, there is no open interval (a, b)
containing x which is a subset of [x , d). Therefore T ′ is strictly finer than
T by Lemma 13.2.
Given a basis element (a, b) for T and x ∈ (a, b), the same basis element
(a, b) ∈ T ′ contains x and satisfies (a, b) ⊂ (a, b). On the other hand, the
basis element B = (−1, 0) \ K for T ′′ contains the point 0, but there is no
open interval (a, b) containing 0 which is a subset of B. Therefore T ′′ is
strictly finer than T by lemma 13.2.
In Exercise 13.6 you will show that topologies T ′ and T ′′ are not
comparable.
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Theorem 13.B

Theorem 13.B. Let S be a subbasis for a topology on X . Define T to be
all unions of finite intersections of elements of S. Then T is a topology on
X .

Proof. Let B be the set of all finite intersections of elements of S:

B = {S1 ∩ Ss ∩ · · · ∩ Sn | n ∈ N;S1,S2, . . . ,Sn ∈ S}.

Let x ∈ X . Then x ∈ S for some S ∈ S by the definition of subbasis, and
so x ∈ S where S ∈ B. S part (1) of the definition of “B is a basis” is
satisfied. Now let B1,B2 ∈ B. Then B1 = S2 ∩ S2 ∩ · · · ∩ Sm and
B2 = S ′

1 ∩ S ′
2 ∩ · · · ∩ S ′

n ∈ B and B2 ⊂ B1 ∩ B2 so that part (2) of the
definition of “B is a basis” is satisfied and so B is a basis for a topology on
X . The topology for which B is a basis is, by Lemma 13.1, the topology
consisting of all unions of elements of B. This is precisely the collection of
sets in T . So T is a topology on X .
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