Introduction to Topology

Chapter 2. Topological Spaces and Continuous Functions Section 13. Basis for a Topology—Proofs of Theorems

Table of contents

- 2 Lemma 13.1
- 3 Lemma 13.2
- 4 Lemma 13.3
- 5 Lemma 13.4

6 Theorem 13.B

Theorem 13.A. Let \mathcal{B} be a basis for a topology on X. Define

 $\mathcal{T} = \{ U \subset X \mid x \in U \text{ implies } x \in B \subset U \text{ for some } B \in \mathcal{B} \},\$

the "topology" generated be \mathcal{B} . Then \mathcal{T} is in fact a topology on X.

Proof. We consider the definition of "topology."

Theorem 13.A. Let \mathcal{B} be a basis for a topology on X. Define

 $\mathcal{T} = \{ U \subset X \mid x \in U \text{ implies } x \in B \subset U \text{ for some } B \in \mathcal{B} \},\$

the "topology" generated be \mathcal{B} . Then \mathcal{T} is in fact a topology on X.

Proof. We consider the definition of "topology."

(1) $\emptyset \in \mathcal{T}$ vacuously. Now $X \in \mathcal{T}$ since each $x \in X$ satisfies $x \in B \subset X$ for some $B \in \mathcal{B}$ by the definition of topology generated by \mathcal{B} .

Theorem 13.A. Let \mathcal{B} be a basis for a topology on X. Define

 $\mathcal{T} = \{ U \subset X \mid x \in U \text{ implies } x \in B \subset U \text{ for some } B \in \mathcal{B} \},\$

the "topology" generated be \mathcal{B} . Then \mathcal{T} is in fact a topology on X.

Proof. We consider the definition of "topology."

(1) $\emptyset \in \mathcal{T}$ vacuously. Now $X \in \mathcal{T}$ since each $x \in X$ satisfies $x \in B \subset X$ for some $B \in \mathcal{B}$ by the definition of topology generated by \mathcal{B} .

(2) Let {U_α}_{α∈J} be an arbitrary collection of elements of *T*. Let U = ∪_{α∈J}U_α. For x ∈ U we have x ∈ U_α for some α ∈ J. Since U_α ∈ *T*, then by the definition of "topology generated by B," x ∈ B ⊂ U_α for some B ∈ B. So x ∈ B ⊂ U and hence by definition U is open.

Theorem 13.A. Let \mathcal{B} be a basis for a topology on X. Define

 $\mathcal{T} = \{ U \subset X \mid x \in U \text{ implies } x \in B \subset U \text{ for some } B \in \mathcal{B} \},\$

the "topology" generated be \mathcal{B} . Then \mathcal{T} is in fact a topology on X.

Proof. We consider the definition of "topology."

- (1) $\emptyset \in \mathcal{T}$ vacuously. Now $X \in \mathcal{T}$ since each $x \in X$ satisfies $x \in B \subset X$ for some $B \in \mathcal{B}$ by the definition of topology generated by \mathcal{B} .
- (2) Let {U_α}_{α∈J} be an arbitrary collection of elements of *T*. Let U = ∪_{α∈J}U_α. For x ∈ U we have x ∈ U_α for some α ∈ J. Since U_α ∈ *T*, then by the definition of "topology generated by B," x ∈ B ⊂ U_α for some B ∈ B. So x ∈ B ⊂ U and hence by definition U is open.

Theorem 13.A (continued)

Theorem 13.A. Let \mathcal{B} be a basis for a topology on X. Define

 $\mathcal{T} = \{ U \subset X \mid x \in U \text{ implies } x \in B \subset U \text{ for some } B \in \mathcal{B} \},\$

the "topology" generated be \mathcal{B} . Then \mathcal{T} is in fact a topology on X. **Proof (continued).**

(3) Let U₁, U₂ ∈ T. For x ∈ U₁ ∩ U₂, by the definition of "topology generated by B," there is B₁ ⊂ U₁ and B₂ ⊂ U₂ with B₁, B₂ ∈ B and x ∈ B₁, x ∈ B₂. By part (2) of the definition of "basis for a topology," there is B₃ ∈ B with x ∈ B₃ and B₃ ⊂ B₁ ∩ B₂ ⊂ U₁ ∩ U₂. Hence U₁ ∩ U₂ ∈ T. Next, by mathematical induction, any finite collection {U₁, U₂,..., U_n} ⊂ T satisfies U₁ ∩ U₂ ∩ … ∩ U_n ∈ T.

So \mathcal{T} satisfies the definition of topology and \mathcal{T} is a topology on X.

Theorem 13.A (continued)

Theorem 13.A. Let \mathcal{B} be a basis for a topology on X. Define

 $\mathcal{T} = \{ U \subset X \mid x \in U \text{ implies } x \in B \subset U \text{ for some } B \in \mathcal{B} \},\$

the "topology" generated be \mathcal{B} . Then \mathcal{T} is in fact a topology on X. **Proof (continued).**

(3) Let U₁, U₂ ∈ T. For x ∈ U₁ ∩ U₂, by the definition of "topology generated by B," there is B₁ ⊂ U₁ and B₂ ⊂ U₂ with B₁, B₂ ∈ B and x ∈ B₁, x ∈ B₂. By part (2) of the definition of "basis for a topology," there is B₃ ∈ B with x ∈ B₃ and B₃ ⊂ B₁ ∩ B₂ ⊂ U₁ ∩ U₂. Hence U₁ ∩ U₂ ∈ T. Next, by mathematical induction, any finite collection {U₁, U₂,..., U_n} ⊂ T satisfies U₁ ∩ U₂ ∩ ··· ∩ U_n ∈ T.

So \mathcal{T} satisfies the definition of topology and \mathcal{T} is a topology on X.

Lemma 13.1. Let X be a set and let \mathcal{B} be a basis for a topology \mathcal{T} on X. Then \mathcal{T} equals the collection of all unions of elements of \mathcal{B} .

Proof. As stated in Theorem 13.A above, all elements of \mathcal{B} are open and so in \mathcal{T} .

Lemma 13.1. Let X be a set and let \mathcal{B} be a basis for a topology \mathcal{T} on X. Then \mathcal{T} equals the collection of all unions of elements of \mathcal{B} .

Proof. As stated in Theorem 13.A above, all elements of \mathcal{B} are open and so in \mathcal{T} . Since \mathcal{T} is a topology, then by part (2) of the definition of "topology," any union of elements of \mathcal{B} are in \mathcal{T} . So \mathcal{T} contains all unions of elements of \mathcal{B} .

Lemma 13.1. Let X be a set and let \mathcal{B} be a basis for a topology \mathcal{T} on X. Then \mathcal{T} equals the collection of all unions of elements of \mathcal{B} .

Proof. As stated in Theorem 13.A above, all elements of \mathcal{B} are open and so in \mathcal{T} . Since \mathcal{T} is a topology, then by part (2) of the definition of "topology," any union of elements of \mathcal{B} are in \mathcal{T} . So \mathcal{T} contains all unions of elements of \mathcal{B} .

Next, suppose $U \in \mathcal{T}$. For each $x \in U$ choose $B_x \in \mathcal{B}$ such that $x \in B_x \subset U$ (which can be done by the definition of "topology \mathcal{T} generated by \mathcal{B} ").

Lemma 13.1. Let X be a set and let \mathcal{B} be a basis for a topology \mathcal{T} on X. Then \mathcal{T} equals the collection of all unions of elements of \mathcal{B} .

Proof. As stated in Theorem 13.A above, all elements of \mathcal{B} are open and so in \mathcal{T} . Since \mathcal{T} is a topology, then by part (2) of the definition of "topology," any union of elements of \mathcal{B} are in \mathcal{T} . So \mathcal{T} contains all unions of elements of \mathcal{B} .

Next, suppose $U \in \mathcal{T}$. For each $x \in U$ choose $B_x \in \mathcal{B}$ such that $x \in B_x \subset U$ (which can be done by the definition of "topology \mathcal{T} generated by \mathcal{B} "). Then $U = \bigcup_{x \in U} B_x$, so U equals a union of elements of \mathcal{B} . Since U is an arbitrary element of \mathcal{T} , then all elements of \mathcal{T} are unions of elements of \mathcal{B} and the result follows.

Lemma 13.1. Let X be a set and let \mathcal{B} be a basis for a topology \mathcal{T} on X. Then \mathcal{T} equals the collection of all unions of elements of \mathcal{B} .

Proof. As stated in Theorem 13.A above, all elements of \mathcal{B} are open and so in \mathcal{T} . Since \mathcal{T} is a topology, then by part (2) of the definition of "topology," any union of elements of \mathcal{B} are in \mathcal{T} . So \mathcal{T} contains all unions of elements of \mathcal{B} .

Next, suppose $U \in \mathcal{T}$. For each $x \in U$ choose $B_x \in \mathcal{B}$ such that $x \in B_x \subset U$ (which can be done by the definition of "topology \mathcal{T} generated by \mathcal{B} "). Then $U = \bigcup_{x \in U} B_x$, so U equals a union of elements of \mathcal{B} . Since U is an arbitrary element of \mathcal{T} , then all elements of \mathcal{T} are unions of elements of \mathcal{B} and the result follows.

Lemma 13.2. Let (X, \mathcal{T}) be a topological space. Suppose that \mathcal{C} is a collection of open sets of X such that for each open subset $U \subset X$ and each $x \in U$, there is an element $C \in \mathcal{C}$ such that $x \in C \subset U$. Then \mathcal{C} is a basis for the topology \mathcal{T} on X.

Proof. First we show that C is a basis.

Lemma 13.2. Let (X, \mathcal{T}) be a topological space. Suppose that \mathcal{C} is a collection of open sets of X such that for each open subset $U \subset X$ and each $x \in U$, there is an element $C \in \mathcal{C}$ such that $x \in C \subset U$. Then \mathcal{C} is a basis for the topology \mathcal{T} on X.

Proof. First we show that C is a basis. For the first part of the definition of basis, for $x \in X$ (since X itself is an open set) then (by hypothesis) there is $X \in C$ such that $x \in C \subset X$.

Lemma 13.2. Let (X, \mathcal{T}) be a topological space. Suppose that \mathcal{C} is a collection of open sets of X such that for each open subset $U \subset X$ and each $x \in U$, there is an element $C \in \mathcal{C}$ such that $x \in C \subset U$. Then \mathcal{C} is a basis for the topology \mathcal{T} on X.

Proof. First we show that C is a basis. For the first part of the definition of basis, for $x \in X$ (since X itself is an open set) then (by hypothesis) there is $X \in C$ such that $x \in C \subset X$. For the second part of the definition of basis, let $x \in C_1 \cap C_2$ where $C_1, C_2 \in C$. Since C_1 and C_2 are open then so is $C_1 \cap C_2$ by part (3) of the definition of topology. Then by hypothesis there is $C_3 \in C$ such that $x \in C_3 \subset C_1 \cap C_2$.

Lemma 13.2. Let (X, \mathcal{T}) be a topological space. Suppose that \mathcal{C} is a collection of open sets of X such that for each open subset $U \subset X$ and each $x \in U$, there is an element $C \in \mathcal{C}$ such that $x \in C \subset U$. Then \mathcal{C} is a basis for the topology \mathcal{T} on X.

Proof. First we show that C is a basis. For the first part of the definition of basis, for $x \in X$ (since X itself is an open set) then (by hypothesis) there is $X \in C$ such that $x \in C \subset X$. For the second part of the definition of basis, let $x \in C_1 \cap C_2$ where $C_1, C_2 \in C$. Since C_1 and C_2 are open then so is $C_1 \cap C_2$ by part (3) of the definition of topology. Then by hypothesis there is $C_3 \in C$ such that $x \in C_3 \subset C_1 \cap C_2$. So both parts of the definition of basis are satisfied and C is a basis for a topology on X.

Lemma 13.2. Let (X, \mathcal{T}) be a topological space. Suppose that \mathcal{C} is a collection of open sets of X such that for each open subset $U \subset X$ and each $x \in U$, there is an element $C \in \mathcal{C}$ such that $x \in C \subset U$. Then \mathcal{C} is a basis for the topology \mathcal{T} on X.

Proof. First we show that C is a basis. For the first part of the definition of basis, for $x \in X$ (since X itself is an open set) then (by hypothesis) there is $X \in C$ such that $x \in C \subset X$. For the second part of the definition of basis, let $x \in C_1 \cap C_2$ where $C_1, C_2 \in C$. Since C_1 and C_2 are open then so is $C_1 \cap C_2$ by part (3) of the definition of topology. Then by hypothesis there is $C_3 \in C$ such that $x \in C_3 \subset C_1 \cap C_2$. So both parts of the definition of basis are satisfied and C is a basis for a topology on X.

Lemma 13.2. Let (X, \mathcal{T}) be a topological space. Suppose that \mathcal{C} is a collection of open sets of X such that for each open subset $U \subset X$ and each $x \in U$, there is an element $C \in \mathcal{C}$ such that $x \in C \subset U$. Then \mathcal{C} is a basis for the topology \mathcal{T} on X.

Proof (continued). Let \mathcal{T}' be the topology on X generated by \mathcal{C} (we now show that $\mathcal{T} = \mathcal{T}'$). First, if $U \in \mathcal{T}$ and $x \in U$, then since \mathcal{C} is a basis for topology \mathcal{T} , there is $C \in \mathcal{C}$ such that $x \in C \subset U$. So, by the definition of "topology generated by" \mathcal{C} , U is in \mathcal{T}' and hence $\mathcal{T} \subset \mathcal{T}'$.

Lemma 13.2. Let (X, \mathcal{T}) be a topological space. Suppose that \mathcal{C} is a collection of open sets of X such that for each open subset $U \subset X$ and each $x \in U$, there is an element $C \in \mathcal{C}$ such that $x \in C \subset U$. Then \mathcal{C} is a basis for the topology \mathcal{T} on X.

Proof (continued). Let \mathcal{T}' be the topology on X generated by \mathcal{C} (we now show that $\mathcal{T} = \mathcal{T}'$). First, if $U \in \mathcal{T}$ and $x \in U$, then since \mathcal{C} is a basis for topology \mathcal{T} , there is $C \in \mathcal{C}$ such that $x \in C \subset U$. So, by the definition of "topology generated by" \mathcal{C} , U is in \mathcal{T}' and hence $\mathcal{T} \subset \mathcal{T}'$. Conversely, if W belongs to \mathcal{T}' then W is a union of elements of \mathcal{C} by Lemma 13.1. Now each element of \mathcal{C} is an element of \mathcal{T} (see the comment at the end of the definition of "topology generated by") and a union of open sets is open (definition of topology, part (2)) so W belongs to \mathcal{T} . That is, $\mathcal{T}' \subset \mathcal{T}$.

Lemma 13.2. Let (X, \mathcal{T}) be a topological space. Suppose that \mathcal{C} is a collection of open sets of X such that for each open subset $U \subset X$ and each $x \in U$, there is an element $C \in \mathcal{C}$ such that $x \in C \subset U$. Then \mathcal{C} is a basis for the topology \mathcal{T} on X.

Proof (continued). Let \mathcal{T}' be the topology on X generated by \mathcal{C} (we now show that $\mathcal{T} = \mathcal{T}'$). First, if $U \in \mathcal{T}$ and $x \in U$, then since \mathcal{C} is a basis for topology \mathcal{T} , there is $C \in \mathcal{C}$ such that $x \in C \subset U$. So, by the definition of "topology generated by" \mathcal{C} , U is in \mathcal{T}' and hence $\mathcal{T} \subset \mathcal{T}'$. Conversely, if W belongs to \mathcal{T}' then W is a union of elements of \mathcal{C} by Lemma 13.1. Now each element of \mathcal{C} is an element of \mathcal{T} (see the comment at the end of the definition of "topology generated by") and a union of open sets is open (definition of topology, part (2)) so W belongs to \mathcal{T} . That is, $\mathcal{T}' \subset \mathcal{T}$. Therefore, $\mathcal{T} = \mathcal{T}'$.

Lemma 13.2. Let (X, \mathcal{T}) be a topological space. Suppose that \mathcal{C} is a collection of open sets of X such that for each open subset $U \subset X$ and each $x \in U$, there is an element $C \in \mathcal{C}$ such that $x \in C \subset U$. Then \mathcal{C} is a basis for the topology \mathcal{T} on X.

Proof (continued). Let \mathcal{T}' be the topology on X generated by \mathcal{C} (we now show that $\mathcal{T} = \mathcal{T}'$). First, if $U \in \mathcal{T}$ and $x \in U$, then since \mathcal{C} is a basis for topology \mathcal{T} , there is $C \in \mathcal{C}$ such that $x \in C \subset U$. So, by the definition of "topology generated by" \mathcal{C} , U is in \mathcal{T}' and hence $\mathcal{T} \subset \mathcal{T}'$. Conversely, if W belongs to \mathcal{T}' then W is a union of elements of \mathcal{C} by Lemma 13.1. Now each element of \mathcal{C} is an element of \mathcal{T} (see the comment at the end of the definition of "topology generated by") and a union of open sets is open (definition of topology, part (2)) so W belongs to \mathcal{T} . That is, $\mathcal{T}' \subset \mathcal{T}$. Therefore, $\mathcal{T} = \mathcal{T}'$.

Lemma 13.3. Let \mathcal{B} and \mathcal{B}' be bases for topologies \mathcal{T} and \mathcal{T}' , respectively, on X. Then the following are equivalent:

- (1) \mathcal{T}' is finer than \mathcal{T} .
- (2) For each $x \in X$ and each basis element $B \in \mathcal{B}$ containing x, there is a basis element $B' \in \mathcal{B}$ such that $x \in B' \subset B$.

Proof. (2) \Rightarrow (1) Given $U \in \mathcal{T}$, let $x \in U$.

Lemma 13.3. Let \mathcal{B} and \mathcal{B}' be bases for topologies \mathcal{T} and \mathcal{T}' , respectively, on X. Then the following are equivalent:

- (1) \mathcal{T}' is finer than \mathcal{T} .
- (2) For each $x \in X$ and each basis element $B \in \mathcal{B}$ containing x, there is a basis element $B' \in \mathcal{B}$ such that $x \in B' \subset B$.

Proof. (2) \Rightarrow (1) Given $U \in T$, let $x \in U$. Since \mathcal{B} generates T, there is $B \in \mathcal{B}$ such that $x \in C \subset U$. By hypothesis (2), there is $B' \in \mathcal{B}'$ such that $x \in B' \subset \mathcal{B}$.

Lemma 13.3. Let \mathcal{B} and \mathcal{B}' be bases for topologies \mathcal{T} and \mathcal{T}' , respectively, on X. Then the following are equivalent:

(1) \mathcal{T}' is finer than \mathcal{T} .

(2) For each $x \in X$ and each basis element $B \in \mathcal{B}$ containing x, there is a basis element $B' \in \mathcal{B}$ such that $x \in B' \subset B$.

Proof. (2) \Rightarrow (1) Given $U \in T$, let $x \in U$. Since \mathcal{B} generates T, there is $B \in \mathcal{B}$ such that $x \in C \subset U$. By hypothesis (2), there is $B' \in \mathcal{B}'$ such that $x \in B' \subset \mathcal{B}$. Then $x \in B' \subset U$ and by the definition of "topology generated by" \mathcal{B}' , we have $U \in T'$. So $T \subset T'$ and (1) follows.

Lemma 13.3. Let \mathcal{B} and \mathcal{B}' be bases for topologies \mathcal{T} and \mathcal{T}' , respectively, on X. Then the following are equivalent:

- (1) \mathcal{T}' is finer than \mathcal{T} .
- (2) For each $x \in X$ and each basis element $B \in \mathcal{B}$ containing x, there is a basis element $B' \in \mathcal{B}$ such that $x \in B' \subset B$.

Proof. (2) \Rightarrow (1) Given $U \in \mathcal{T}$, let $x \in U$. Since \mathcal{B} generates \mathcal{T} , there is $B \in \mathcal{B}$ such that $x \in C \subset U$. By hypothesis (2), there is $B' \in \mathcal{B}'$ such that $x \in B' \subset \mathcal{B}$. Then $x \in B' \subset U$ and by the definition of "topology generated by" \mathcal{B}' , we have $U \in \mathcal{T}'$. So $\mathcal{T} \subset \mathcal{T}'$ and (1) follows.

(1) \Rightarrow (2) Let $x \in X$ and $B \in \mathcal{B}$ where $x \in B$. Since \mathcal{B} generates \mathcal{T} , then $B \in \mathcal{T}$.

Lemma 13.3. Let \mathcal{B} and \mathcal{B}' be bases for topologies \mathcal{T} and \mathcal{T}' , respectively, on X. Then the following are equivalent:

- (1) \mathcal{T}' is finer than \mathcal{T} .
- (2) For each $x \in X$ and each basis element $B \in \mathcal{B}$ containing x, there is a basis element $B' \in \mathcal{B}$ such that $x \in B' \subset B$.

Proof. (2) \Rightarrow (1) Given $U \in \mathcal{T}$, let $x \in U$. Since \mathcal{B} generates \mathcal{T} , there is $B \in \mathcal{B}$ such that $x \in C \subset U$. By hypothesis (2), there is $B' \in \mathcal{B}'$ such that $x \in B' \subset \mathcal{B}$. Then $x \in B' \subset U$ and by the definition of "topology generated by" \mathcal{B}' , we have $U \in \mathcal{T}'$. So $\mathcal{T} \subset \mathcal{T}'$ and (1) follows.

(1) \Rightarrow (2) Let $x \in X$ and $B \in \mathcal{B}$ where $x \in B$. Since \mathcal{B} generates \mathcal{T} , then $B \in \mathcal{T}$. By hypothesis (1), $\mathcal{T} \subset \mathcal{T}'$ and so $B \in \mathcal{T}'$. Since \mathcal{T}' is generated by \mathcal{B}' , there is (by definition) $B' \in \mathcal{B}''$ such that $x \in B' \subset B$ and (2) follows.

Lemma 13.3. Let \mathcal{B} and \mathcal{B}' be bases for topologies \mathcal{T} and \mathcal{T}' , respectively, on X. Then the following are equivalent:

- (1) \mathcal{T}' is finer than \mathcal{T} .
- (2) For each $x \in X$ and each basis element $B \in \mathcal{B}$ containing x, there is a basis element $B' \in \mathcal{B}$ such that $x \in B' \subset B$.

Proof. (2) \Rightarrow (1) Given $U \in \mathcal{T}$, let $x \in U$. Since \mathcal{B} generates \mathcal{T} , there is $B \in \mathcal{B}$ such that $x \in C \subset U$. By hypothesis (2), there is $B' \in \mathcal{B}'$ such that $x \in B' \subset \mathcal{B}$. Then $x \in B' \subset U$ and by the definition of "topology generated by" \mathcal{B}' , we have $U \in \mathcal{T}'$. So $\mathcal{T} \subset \mathcal{T}'$ and (1) follows.

(1) \Rightarrow (2) Let $x \in X$ and $B \in \mathcal{B}$ where $x \in B$. Since \mathcal{B} generates \mathcal{T} , then $B \in \mathcal{T}$. By hypothesis (1), $\mathcal{T} \subset \mathcal{T}'$ and so $B \in \mathcal{T}'$. Since \mathcal{T}' is generated by \mathcal{B}' , there is (by definition) $B' \in \mathcal{B}''$ such that $x \in B' \subset B$ and (2) follows.

Lemma 13.4. The topologies of \mathbb{R}_{ℓ} and \mathbb{R}_{K} are each strictly finer than the standard topology on \mathbb{R} , but are not comparable with one another.

Proof. Let \mathcal{T} , \mathcal{T}' , and \mathcal{T}'' be the topologies of \mathbb{R} , \mathbb{R}_{ℓ} , and \mathbb{R}_{K} , respectively.

Lemma 13.4. The topologies of \mathbb{R}_{ℓ} and \mathbb{R}_{K} are each strictly finer than the standard topology on \mathbb{R} , but are not comparable with one another.

Proof. Let $\mathcal{T}, \mathcal{T}'$, and \mathcal{T}'' be the topologies of $\mathbb{R}, \mathbb{R}_{\ell}$, and \mathbb{R}_{K} , respectively. Given a basis element (a, b) for \mathcal{T} and $x \in (a, b)$, the basis element $[x, b) \in \mathcal{T}'$ contains x and satisfies $[x, b) \subset (a, b)$.

Lemma 13.4. The topologies of \mathbb{R}_{ℓ} and \mathbb{R}_{K} are each strictly finer than the standard topology on \mathbb{R} , but are not comparable with one another.

Proof. Let $\mathcal{T}, \mathcal{T}'$, and \mathcal{T}'' be the topologies of $\mathbb{R}, \mathbb{R}_{\ell}$, and \mathbb{R}_{K} , respectively. Given a basis element (a, b) for \mathcal{T} and $x \in (a, b)$, the basis element $[x, b) \in \mathcal{T}'$ contains x and satisfies $[x, b) \subset (a, b)$. On the other hand, given basis element [x, b) for \mathcal{T}' , there is no open interval (a, b) containing x which is a subset of [x, d). Therefore \mathcal{T}' is strictly finer than \mathcal{T} by Lemma 13.2.

Lemma 13.4. The topologies of \mathbb{R}_{ℓ} and \mathbb{R}_{K} are each strictly finer than the standard topology on \mathbb{R} , but are not comparable with one another.

Proof. Let $\mathcal{T}, \mathcal{T}'$, and \mathcal{T}'' be the topologies of $\mathbb{R}, \mathbb{R}_{\ell}$, and \mathbb{R}_{K} , respectively. Given a basis element (a, b) for \mathcal{T} and $x \in (a, b)$, the basis element $[x, b) \in \mathcal{T}'$ contains x and satisfies $[x, b) \subset (a, b)$. On the other hand, given basis element [x, b) for \mathcal{T}' , there is no open interval (a, b) containing x which is a subset of [x, d). Therefore \mathcal{T}' is strictly finer than \mathcal{T} by Lemma 13.2.

Given a basis element (a, b) for \mathcal{T} and $x \in (a, b)$, the same basis element $(a, b) \in \mathcal{T}'$ contains x and satisfies $(a, b) \subset (a, b)$.

Lemma 13.4. The topologies of \mathbb{R}_{ℓ} and \mathbb{R}_{K} are each strictly finer than the standard topology on \mathbb{R} , but are not comparable with one another.

Proof. Let $\mathcal{T}, \mathcal{T}'$, and \mathcal{T}'' be the topologies of $\mathbb{R}, \mathbb{R}_{\ell}$, and \mathbb{R}_{K} , respectively. Given a basis element (a, b) for \mathcal{T} and $x \in (a, b)$, the basis element $[x, b) \in \mathcal{T}'$ contains x and satisfies $[x, b) \subset (a, b)$. On the other hand, given basis element [x, b) for \mathcal{T}' , there is no open interval (a, b) containing x which is a subset of [x, d). Therefore \mathcal{T}' is strictly finer than \mathcal{T} by Lemma 13.2.

Given a basis element (a, b) for \mathcal{T} and $x \in (a, b)$, the same basis element $(a, b) \in \mathcal{T}'$ contains x and satisfies $(a, b) \subset (a, b)$. On the other hand, the basis element $B = (-1, 0) \setminus K$ for \mathcal{T}'' contains the point 0, but there is no open interval (a, b) containing 0 which is a subset of B. Therefore \mathcal{T}'' is strictly finer than \mathcal{T} by lemma 13.2.

Lemma 13.4. The topologies of \mathbb{R}_{ℓ} and \mathbb{R}_{K} are each strictly finer than the standard topology on \mathbb{R} , but are not comparable with one another.

Proof. Let $\mathcal{T}, \mathcal{T}'$, and \mathcal{T}'' be the topologies of $\mathbb{R}, \mathbb{R}_{\ell}$, and \mathbb{R}_{K} , respectively. Given a basis element (a, b) for \mathcal{T} and $x \in (a, b)$, the basis element $[x, b) \in \mathcal{T}'$ contains x and satisfies $[x, b) \subset (a, b)$. On the other hand, given basis element [x, b) for \mathcal{T}' , there is no open interval (a, b) containing x which is a subset of [x, d). Therefore \mathcal{T}' is strictly finer than \mathcal{T} by Lemma 13.2.

Given a basis element (a, b) for \mathcal{T} and $x \in (a, b)$, the same basis element $(a, b) \in \mathcal{T}'$ contains x and satisfies $(a, b) \subset (a, b)$. On the other hand, the basis element $B = (-1, 0) \setminus K$ for \mathcal{T}'' contains the point 0, but there is no open interval (a, b) containing 0 which is a subset of B. Therefore \mathcal{T}'' is strictly finer than \mathcal{T} by lemma 13.2.

In Exercise 13.6 you will show that topologies \mathcal{T}' and \mathcal{T}'' are not comparable.

Lemma 13.4. The topologies of \mathbb{R}_{ℓ} and \mathbb{R}_{K} are each strictly finer than the standard topology on \mathbb{R} , but are not comparable with one another.

Proof. Let $\mathcal{T}, \mathcal{T}'$, and \mathcal{T}'' be the topologies of $\mathbb{R}, \mathbb{R}_{\ell}$, and \mathbb{R}_{K} , respectively. Given a basis element (a, b) for \mathcal{T} and $x \in (a, b)$, the basis element $[x, b) \in \mathcal{T}'$ contains x and satisfies $[x, b) \subset (a, b)$. On the other hand, given basis element [x, b) for \mathcal{T}' , there is no open interval (a, b) containing x which is a subset of [x, d). Therefore \mathcal{T}' is strictly finer than \mathcal{T} by Lemma 13.2.

Given a basis element (a, b) for \mathcal{T} and $x \in (a, b)$, the same basis element $(a, b) \in \mathcal{T}'$ contains x and satisfies $(a, b) \subset (a, b)$. On the other hand, the basis element $B = (-1, 0) \setminus K$ for \mathcal{T}'' contains the point 0, but there is no open interval (a, b) containing 0 which is a subset of B. Therefore \mathcal{T}'' is strictly finer than \mathcal{T} by lemma 13.2.

In Exercise 13.6 you will show that topologies \mathcal{T}' and \mathcal{T}'' are not comparable.

Theorem 13.B. Let S be a subbasis for a topology on X. Define T to be all unions of finite intersections of elements of S. Then T is a topology on X.

Proof. Let \mathcal{B} be the set of all finite intersections of elements of \mathcal{S} :

$$\mathcal{B} = \{S_1 \cap S_s \cap \cdots \cap S_n \mid n \in \mathbb{N}; S_1, S_2, \dots, S_n \in \mathcal{S}\}.$$

Theorem 13.B. Let S be a subbasis for a topology on X. Define T to be all unions of finite intersections of elements of S. Then T is a topology on X.

Proof. Let \mathcal{B} be the set of all finite intersections of elements of \mathcal{S} :

$$\mathcal{B} = \{S_1 \cap S_s \cap \cdots \cap S_n \mid n \in \mathbb{N}; S_1, S_2, \dots, S_n \in \mathcal{S}\}.$$

Let $x \in X$. Then $x \in S$ for some $S \in S$ by the definition of subbasis, and so $x \in S$ where $S \in \mathcal{B}$. S part (1) of the definition of " \mathcal{B} is a basis" is satisfied.

Theorem 13.B. Let S be a subbasis for a topology on X. Define T to be all unions of finite intersections of elements of S. Then T is a topology on X.

Proof. Let \mathcal{B} be the set of all finite intersections of elements of \mathcal{S} :

$$\mathcal{B} = \{S_1 \cap S_s \cap \cdots \cap S_n \mid n \in \mathbb{N}; S_1, S_2, \dots, S_n \in \mathcal{S}\}.$$

Let $x \in X$. Then $x \in S$ for some $S \in S$ by the definition of subbasis, and so $x \in S$ where $S \in B$. S part (1) of the definition of "B is a basis" is satisfied. Now let $B_1, B_2 \in B$. Then $B_1 = S_2 \cap S_2 \cap \cdots \cap S_m$ and $B_2 = S'_1 \cap S'_2 \cap \cdots \cap S'_n \in B$ and $B_2 \subset B_1 \cap B_2$ so that part (2) of the definition of "B is a basis" is satisfied and so B is a basis for a topology on X.

Theorem 13.B. Let S be a subbasis for a topology on X. Define T to be all unions of finite intersections of elements of S. Then T is a topology on X.

Proof. Let \mathcal{B} be the set of all finite intersections of elements of \mathcal{S} :

$$\mathcal{B} = \{S_1 \cap S_s \cap \cdots \cap S_n \mid n \in \mathbb{N}; S_1, S_2, \dots, S_n \in \mathcal{S}\}.$$

Let $x \in X$. Then $x \in S$ for some $S \in S$ by the definition of subbasis, and so $x \in S$ where $S \in B$. S part (1) of the definition of "B is a basis" is satisfied. Now let $B_1, B_2 \in B$. Then $B_1 = S_2 \cap S_2 \cap \cdots \cap S_m$ and $B_2 = S'_1 \cap S'_2 \cap \cdots \cap S'_n \in B$ and $B_2 \subset B_1 \cap B_2$ so that part (2) of the definition of "B is a basis" is satisfied and so B is a basis for a topology on X. The topology for which B is a basis is, by Lemma 13.1, the topology consisting of all unions of elements of B. This is precisely the collection of sets in T. So T is a topology on X.

Theorem 13.B. Let S be a subbasis for a topology on X. Define T to be all unions of finite intersections of elements of S. Then T is a topology on X.

Proof. Let \mathcal{B} be the set of all finite intersections of elements of \mathcal{S} :

$$\mathcal{B} = \{S_1 \cap S_s \cap \cdots \cap S_n \mid n \in \mathbb{N}; S_1, S_2, \dots, S_n \in \mathcal{S}\}.$$

Let $x \in X$. Then $x \in S$ for some $S \in S$ by the definition of subbasis, and so $x \in S$ where $S \in B$. S part (1) of the definition of "B is a basis" is satisfied. Now let $B_1, B_2 \in B$. Then $B_1 = S_2 \cap S_2 \cap \cdots \cap S_m$ and $B_2 = S'_1 \cap S'_2 \cap \cdots \cap S'_n \in B$ and $B_2 \subset B_1 \cap B_2$ so that part (2) of the definition of "B is a basis" is satisfied and so B is a basis for a topology on X. The topology for which B is a basis is, by Lemma 13.1, the topology consisting of all unions of elements of B. This is precisely the collection of sets in T. So T is a topology on X.