Introduction to Topology

Chapter 2. Topological Spaces and Continuous Functions Section 14. The Order Topology—Proofs of Theorems

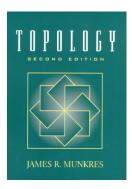


Table of contents

Theorem 14.A. Let X be a set with a simple order relation and let \mathcal{B} consist of all open intervals (a, b), all intervals $[a_0, b)$, and all intervals $(a, b_0]$, where a_0 is the least element of X and b_0 is the greatest element of X (if such exist). Then \mathcal{B} is a basis for a topology on X.

Proof. We confirm that the definition of basis of a topology is satisfied. If a_0 is the least element of X then $a_0 \in [a_0, b)$ for all $b \neq a_0$. If b_0 is the greatest element of X then $b_0 \in (a, b_0]$ for all $a \neq b_0$.

- **Theorem 14.A.** Let X be a set with a simple order relation and let \mathcal{B} consist of all open intervals (a, b), all intervals $[a_0, b)$, and all intervals $(a, b_0]$, where a_0 is the least element of X and b_0 is the greatest element of X (if such exist). Then \mathcal{B} is a basis for a topology on X.
- **Proof.** We confirm that the definition of basis of a topology is satisfied. If a_0 is the least element of X then $a_0 \in [a_0, b)$ for all $b \neq a_0$. If b_0 is the greatest element of X then $b_0 \in (a, b_0]$ for all $a \neq b_0$. If $x \in X$ is neither the least nor greatest element of X then $x \in (a, b)$ for some $a, b \in X$. So part (1) of the definition is satisfied.

Theorem 14.A. Let X be a set with a simple order relation and let \mathcal{B} consist of all open intervals (a, b), all intervals $[a_0, b)$, and all intervals $(a, b_0]$, where a_0 is the least element of X and b_0 is the greatest element of X (if such exist). Then \mathcal{B} is a basis for a topology on X.

Proof. We confirm that the definition of basis of a topology is satisfied. If a_0 is the least element of X then $a_0 \in [a_0, b)$ for all $b \neq a_0$. If b_0 is the greatest element of X then $b_0 \in (a, b_0]$ for all $a \neq b_0$. If $x \in X$ is neither the least nor greatest element of X then $x \in (a, b)$ for some $a, b \in X$. So part (1) of the definition is satisfied.

For part (2) of the definition, let $B_1, B_2 \in \mathcal{B}$. Then $B_3 = B_2 \cap B_2 \in \mathcal{B}$ and $B_3 \subset B_1 \cap B_2$. So part (2) is satisfied and \mathcal{B} is in fact a basis for a topology on X.

Theorem 14.A. Let X be a set with a simple order relation and let \mathcal{B} consist of all open intervals (a, b), all intervals $[a_0, b)$, and all intervals $(a, b_0]$, where a_0 is the least element of X and b_0 is the greatest element of X (if such exist). Then \mathcal{B} is a basis for a topology on X.

Proof. We confirm that the definition of basis of a topology is satisfied. If a_0 is the least element of X then $a_0 \in [a_0, b)$ for all $b \neq a_0$. If b_0 is the greatest element of X then $b_0 \in (a, b_0]$ for all $a \neq b_0$. If $x \in X$ is neither the least nor greatest element of X then $x \in (a, b)$ for some $a, b \in X$. So part (1) of the definition is satisfied.

For part (2) of the definition, let $B_1, B_2 \in \mathcal{B}$. Then $B_3 = B_2 \cap B_2 \in \mathcal{B}$ and $B_3 \subset B_1 \cap B_2$. So part (2) is satisfied and \mathcal{B} is in fact a basis for a topology on X.

Theorem 14.B. Let X be a set with a simple order relation. The open rays form a subbasis for the order topology \mathcal{T} on X.

Proof. Let S be the set of all open rays. As observed above, the open rays are in fact open sets in the order topology, so $S \subset T$ and the topology generated by S is a subset of T as well (Lemma 31.1).

Theorem 14.B. Let X be a set with a simple order relation. The open rays form a subbasis for the order topology \mathcal{T} on X. **Proof.** Let \mathcal{S} be the set of all open rays. As observed above, the open rays are in fact open sets in the order topology, so $\mathcal{S} \subset \mathcal{T}$ and the topology generated by S is a subset of T as well (Lemma 31.1). For the first part of the definition of subbasis, notice that a < b implies that $X = (-\infty, b) \cup (a, \infty)$. For the second part of the definition of subbasis it is sufficient to show that every open interval (a, b) is the intersection of a finite number of open rays. Of course $(a, b) = (-\infty, b) \cap (a, +\infty)$. (Notice that if a_0 is the least and b_0 is the greatest element of X then $[a_0, +\infty) = (-\infty, b)$ and $(a, b_0] = (a, +\infty)$ are in fact open rays.)

Theorem 14.B. Let X be a set with a simple order relation. The open rays form a subbasis for the order topology \mathcal{T} on X. **Proof.** Let \mathcal{S} be the set of all open rays. As observed above, the open rays are in fact open sets in the order topology, so $\mathcal{S} \subset \mathcal{T}$ and the topology generated by S is a subset of T as well (Lemma 31.1). For the first part of the definition of subbasis, notice that a < b implies that $X = (-\infty, b) \cup (a, \infty)$. For the second part of the definition of subbasis it is sufficient to show that every open interval (a, b) is the intersection of a finite number of open rays. Of course $(a, b) = (-\infty, b) \cap (a, +\infty)$. (Notice that if a_0 is the least and b_0 is the greatest element of X then $[a_0, +\infty) = (-\infty, b)$ and $(a, b_0] = (a, +\infty)$ are in fact open rays.) By Lemma 13.1, the open sets of the order topology consist of all unions of elements of $\mathcal{B} = \{(a, b) \mid a < b\}$, so the unions of all finite intersections of open rays in S include all open sets in the order topology. That is, the topology generated by S contains T and so the topology generated by S equals the order topology \mathcal{T} .

()

Theorem 14.B. Let X be a set with a simple order relation. The open rays form a subbasis for the order topology \mathcal{T} on X. **Proof.** Let \mathcal{S} be the set of all open rays. As observed above, the open rays are in fact open sets in the order topology, so $\mathcal{S} \subset \mathcal{T}$ and the topology generated by S is a subset of T as well (Lemma 31.1). For the first part of the definition of subbasis, notice that a < b implies that $X = (-\infty, b) \cup (a, \infty)$. For the second part of the definition of subbasis it is sufficient to show that every open interval (a, b) is the intersection of a finite number of open rays. Of course $(a, b) = (-\infty, b) \cap (a, +\infty)$. (Notice that if a_0 is the least and b_0 is the greatest element of X then $[a_0, +\infty) = (-\infty, b)$ and $(a, b_0] = (a, +\infty)$ are in fact open rays.) By Lemma 13.1, the open sets of the order topology consist of all unions of elements of $\mathcal{B} = \{(a, b) \mid a < b\}$, so the unions of all finite intersections of open rays in \mathcal{S} include all open sets in the order topology. That is, the topology generated by S contains T and so the topology generated by S equals the order topology \mathcal{T} .

- ()