## Theorem 15.1

## Introduction to Topology

Chapter 2. Topological Spaces and Continuous Functions Section 15. The Product Topology on  $X \times Y$ —Proofs of Theorems



**Theorem 15.1.** If  $\mathcal{B}$  is a basis for the topology of X and  $\mathcal{C}$  is a basis for the topology of Y, then the collection  $\mathcal{D} = \{B \times C \mid B \in \mathcal{B} \text{ and } C \in \mathcal{C}\}$  is a basis for the topology of  $X \times Y$ .

**Proof.** Let  $W \subset X \times Y$  be an open set and let  $(x,y) \in W$ . By the definition of product topology, there is a basis element  $U \times V$ , where U is open in X and V is open in Y, such that  $(x,y) \in U \times V \subset W$ . So  $x \in U$  and  $y \in V$ . Since  $\mathcal{B}$  and  $\mathcal{C}$  are bases for X and Y, respectively, then there are open  $B \in \mathcal{B}$  and  $C \in \mathcal{C}$  such that  $x \in B \subset U$  and  $y \in C \subset V$ . Notice that  $B \times C$  is an element of the basis for the product topology and so is open and  $B \times C \in \mathcal{D}$ . That is,  $(x,y) \in B \times C \subset W$  where  $B \times C \in \mathcal{D}$ , so by Theorem 13.2,  $\mathcal{D}$  is a basis for the product topology.

Theorem 15.

## **Theorem 15.2.** The set

Theorem 15.2

 $\mathcal{S} = \{\pi_1^{-1}(U) \mid U \text{ is open in } X\} \cup \{\pi_2^{-1}(V) \mid V \text{ is open in } Y\}$ 

is a subbasis for the product topology on  $X\times Y$ 

**Proof.** Let T denote the product topology on  $X \times Y$ . Let T' be the topology generated by set S. For open sets  $U \subset X$  and  $V \subset Y$ , we have that  $\pi_1^{-1}(U) = U \times Y$  and  $\pi_2^{-1}(V) = X \times V$  are elements of the basis for the product topology T (and so are open in T) and hence  $S \subset T$ . So arbitrary unions (and finite intersections) of elements of S are in T. Therefore, by Lemma 13.1,  $T' \subset T$ . On the other hand, every basis element  $U \times V$  for T is of the form  $U \times V = (U \times Y) \cap (X \times V) = \pi_1^{-1}(U) \cap \pi_2^{-1}(V)$  (a finite intersection of elements of S) and so is in the topology T' generated by S. That is,

Introduction to Topology May 30, 2016 4 / 4

 $\mathcal{T}\subset\mathcal{T}'$  and hence  $\mathcal{T}=\mathcal{T}'.$  So the collection of all unions of finite intersections of  $\mathcal S$  is  $\mathcal T$  and  $\mathcal S$  is a subbasis for the product topology  $\mathcal T$ .