Introduction to Topology

Chapter 2. Topological Spaces and Continuous Functions Section 15. The Product Topology on $X \times Y$ —Proofs of Theorems

Table of contents

Proof. Let $W \subset X \times Y$ be an open set and let $(x, y) \in W$.

Proof. Let $W \subset X \times Y$ be an open set and let $(x, y) \in W$. By the definition of product topology, there is a basis element $U \times V$, where U is open in X and V is open in Y, such that $(x, y) \in U \times V \subset W$. So $x \in U$ and $y \in V$.

Proof. Let $W \subset X \times Y$ be an open set and let $(x, y) \in W$. By the definition of product topology, there is a basis element $U \times V$, where U is open in X and V is open in Y, such that $(x, y) \in U \times V \subset W$. So $x \in U$ and $y \in V$. Since B and C are bases for X and Y, respectively, then there are open $B \in B$ and $C \in C$ such that $x \in B \subset U$ and $y \in C \subset V$. Notice that $B \times C$ is an element of the basis for the product topology and so is open and $B \times C \in D$.

Proof. Let $W \subset X \times Y$ be an open set and let $(x, y) \in W$. By the definition of product topology, there is a basis element $U \times V$, where U is open in X and V is open in Y, such that $(x, y) \in U \times V \subset W$. So $x \in U$ and $y \in V$. Since \mathcal{B} and \mathcal{C} are bases for X and Y, respectively, then there are open $B \in \mathcal{B}$ and $C \in \mathcal{C}$ such that $x \in B \subset U$ and $y \in C \subset V$. Notice that $B \times C$ is an element of the basis for the product topology and so is open and $B \times C \in \mathcal{D}$. That is, $(x, y) \in B \times C \subset W$ where $B \times C \in \mathcal{D}$, so by Theorem 13.2, \mathcal{D} is a basis for the product topology.

Proof. Let $W \subset X \times Y$ be an open set and let $(x, y) \in W$. By the definition of product topology, there is a basis element $U \times V$, where U is open in X and V is open in Y, such that $(x, y) \in U \times V \subset W$. So $x \in U$ and $y \in V$. Since \mathcal{B} and \mathcal{C} are bases for X and Y, respectively, then there are open $B \in \mathcal{B}$ and $C \in \mathcal{C}$ such that $x \in B \subset U$ and $y \in C \subset V$. Notice that $B \times C$ is an element of the basis for the product topology and so is open and $B \times C \in \mathcal{D}$. That is, $(x, y) \in B \times C \subset W$ where $B \times C \in \mathcal{D}$, so by Theorem 13.2, \mathcal{D} is a basis for the product topology.

Theorem 15.2. The set

 $\mathcal{S} = \{\pi_1^{-1}(U) \mid U \text{ is open in } X\} \cup \{\pi_2^{-1}(V) \mid V \text{ is open in } Y\}$

is a subbasis for the product topology on $X \times Y$.

Proof. Let \mathcal{T} denote the product topology on $X \times Y$. Let \mathcal{T}' be the topology generated by set \mathcal{S} .

Theorem 15.2. The set

 $\mathcal{S} = \{\pi_1^{-1}(U) \mid U \text{ is open in } X\} \cup \{\pi_2^{-1}(V) \mid V \text{ is open in } Y\}$

is a subbasis for the product topology on $X \times Y$. **Proof.** Let \mathcal{T} denote the product topology on $X \times Y$. Let \mathcal{T}' be the topology generated by set \mathcal{S} . For open sets $U \subset X$ and $V \subset Y$, we have that $\pi_1^{-1}(U) = U \times Y$ and $\pi_2^{-1}(V) = X \times V$ are elements of the basis for the product topology \mathcal{T} (and so are open in \mathcal{T}) and hence $\mathcal{S} \subset \mathcal{T}$. So arbitrary unions (and finite intersections) of elements of \mathcal{S} are in \mathcal{T} . Therefore, by Lemma 13.1, $\mathcal{T}' \subset \mathcal{T}$.

Theorem 15.2. The set

 $S = \{\pi_1^{-1}(U) \mid U \text{ is open in } X\} \cup \{\pi_2^{-1}(V) \mid V \text{ is open in } Y\}$

is a subbasis for the product topology on $X \times Y$.

Proof. Let \mathcal{T} denote the product topology on $X \times Y$. Let \mathcal{T}' be the topology generated by set \mathcal{S} . For open sets $U \subset X$ and $V \subset Y$, we have that $\pi_1^{-1}(U) = U \times Y$ and $\pi_2^{-1}(V) = X \times V$ are elements of the basis for the product topology \mathcal{T} (and so are open in \mathcal{T}) and hence $\mathcal{S} \subset \mathcal{T}$. So arbitrary unions (and finite intersections) of elements of \mathcal{S} are in \mathcal{T} . Therefore, by Lemma 13.1, $\mathcal{T}' \subset \mathcal{T}$. On the other hand, every basis element $U \times v$ for \mathcal{T} is of the form $U \times V = (U \times Y) \cap (X \times V) = \pi_1^{-1}(U) \cap \pi_2^{-1}(V)$ (a finite intersection of elements of \mathcal{S}) and so is in the topology \mathcal{T}' generated by \mathcal{S} . That is, $\mathcal{T} \subset \mathcal{T}'$ and hence $\mathcal{T} = \mathcal{T}'$.

Theorem 15.2. The set

 $S = \{\pi_1^{-1}(U) \mid U \text{ is open in } X\} \cup \{\pi_2^{-1}(V) \mid V \text{ is open in } Y\}$

is a subbasis for the product topology on $X \times Y$.

Proof. Let \mathcal{T} denote the product topology on $X \times Y$. Let \mathcal{T}' be the topology generated by set S. For open sets $U \subset X$ and $V \subset Y$, we have that $\pi_1^{-1}(U) = U \times Y$ and $\pi_2^{-1}(V) = X \times V$ are elements of the basis for the product topology \mathcal{T} (and so are open in \mathcal{T}) and hence $\mathcal{S} \subset \mathcal{T}$. So arbitrary unions (and finite intersections) of elements of S are in T. Therefore, by Lemma 13.1, $\mathcal{T}' \subset \mathcal{T}$. On the other hand, every basis element $U \times v$ for \mathcal{T} is of the form $U \times V = (U \times Y) \cap (X \times V) = \pi_1^{-1}(U) \cap \pi_2^{-1}(V)$ (a finite intersection of elements of S) and so is in the topology T' generated by S. That is, $\mathcal{T} \subset \mathcal{T}'$ and hence $\mathcal{T} = \mathcal{T}'$. So the collection of all unions of finite intersections of S is T and S is a subbasis for the product topology T. \Box

Theorem 15.2. The set

 $S = \{\pi_1^{-1}(U) \mid U \text{ is open in } X\} \cup \{\pi_2^{-1}(V) \mid V \text{ is open in } Y\}$

is a subbasis for the product topology on $X \times Y$.

Proof. Let \mathcal{T} denote the product topology on $X \times Y$. Let \mathcal{T}' be the topology generated by set S. For open sets $U \subset X$ and $V \subset Y$, we have that $\pi_1^{-1}(U) = U \times Y$ and $\pi_2^{-1}(V) = X \times V$ are elements of the basis for the product topology \mathcal{T} (and so are open in \mathcal{T}) and hence $\mathcal{S} \subset \mathcal{T}$. So arbitrary unions (and finite intersections) of elements of S are in T. Therefore, by Lemma 13.1, $\mathcal{T}' \subset \mathcal{T}$. On the other hand, every basis element $U \times v$ for \mathcal{T} is of the form $U \times V = (U \times Y) \cap (X \times V) = \pi_1^{-1}(U) \cap \pi_2^{-1}(V)$ (a finite intersection of elements of S) and so is in the topology T' generated by S. That is, $\mathcal{T} \subset \mathcal{T}'$ and hence $\mathcal{T} = \mathcal{T}'$. So the collection of all unions of finite intersections of S is T and S is a subbasis for the product topology T.