Introduction to Topology

Chapter 2. Topological Spaces and Continuous Functions Section 15. The Product Topology on $X \times Y$ —Proofs of Theorems

Table of contents

Theorem 15.1. If B is a basis for the topology of X and C is a basis for the topology of Y, then the collection $\mathcal{D} = \{B \times C \mid B \in \mathcal{B} \text{ and } C \in \mathcal{C}\}\$ is a basis for the topology of $X \times Y$.

Proof. Let $W \subset X \times Y$ be an open set and let $(x, y) \in W$.

Theorem 15.1. If B is a basis for the topology of X and C is a basis for the topology of Y, then the collection $D = \{B \times C \mid B \in \mathcal{B} \text{ and } C \in \mathcal{C}\}\$ is a basis for the topology of $X \times Y$.

Proof. Let $W \subset X \times Y$ be an open set and let $(x, y) \in W$. By the definition of product topology, there is a basis element $U \times V$, where U is open in X and V is open in Y, such that $(x, y) \in U \times V \subset W$. So $x \in U$ and $y \in V$.

Theorem 15.1. If B is a basis for the topology of X and C is a basis for the topology of Y, then the collection $\mathcal{D} = \{B \times C \mid B \in \mathcal{B} \text{ and } C \in \mathcal{C}\}\$ is a basis for the topology of $X \times Y$.

Proof. Let $W \subset X \times Y$ be an open set and let $(x, y) \in W$. By the definition of product topology, there is a basis element $U \times V$, where U is open in X and V is open in Y, such that $(x, y) \in U \times V \subset W$. So $x \in U$ **and** $y \in V$ **.** Since B and C are bases for X and Y, respectively, then there are open $B \in \mathcal{B}$ and $C \in \mathcal{C}$ such that $x \in B \subset U$ and $y \in C \subset V$. Notice that $B \times C$ is an element of the basis for the product topology and so is open and $B \times C \in \mathcal{D}$.

Theorem 15.1. If B is a basis for the topology of X and C is a basis for the topology of Y, then the collection $D = \{B \times C \mid B \in \mathcal{B} \text{ and } C \in \mathcal{C}\}\$ is a basis for the topology of $X \times Y$.

Proof. Let $W \subset X \times Y$ be an open set and let $(x, y) \in W$. By the definition of product topology, there is a basis element $U \times V$, where U is open in X and V is open in Y, such that $(x, y) \in U \times V \subset W$. So $x \in U$ and $y \in V$. Since B and C are bases for X and Y, respectively, then there are open $B \in \mathcal{B}$ and $C \in \mathcal{C}$ such that $x \in B \subset U$ and $y \in C \subset V$. Notice that $B \times C$ is an element of the basis for the product topology and so is **open and** $B \times C \in \mathcal{D}$ **.** That is, $(x, y) \in B \times C \subset W$ where $B \times C \in \mathcal{D}$, so by Theorem 13.2, D is a basis for the product topology.

Theorem 15.1. If B is a basis for the topology of X and C is a basis for the topology of Y, then the collection $D = \{B \times C \mid B \in \mathcal{B} \text{ and } C \in \mathcal{C}\}\$ is a basis for the topology of $X \times Y$.

Proof. Let $W \subset X \times Y$ be an open set and let $(x, y) \in W$. By the definition of product topology, there is a basis element $U \times V$, where U is open in X and V is open in Y, such that $(x, y) \in U \times V \subset W$. So $x \in U$ and $y \in V$. Since B and C are bases for X and Y, respectively, then there are open $B \in \mathcal{B}$ and $C \in \mathcal{C}$ such that $x \in B \subset U$ and $y \in C \subset V$. Notice that $B \times C$ is an element of the basis for the product topology and so is open and $B \times C \in \mathcal{D}$. That is, $(x, y) \in B \times C \subset W$ where $B \times C \in \mathcal{D}$, so by Theorem 13.2, D is a basis for the product topology.

Theorem 15.2. The set

 $\mathcal{S} = \{\pi_1^{-1}(U) \mid U$ is open in $X\} \cup \{\pi_2^{-1}(V) \mid V$ is open in $Y\}$

is a subbasis for the product topology on $X \times Y$.

Proof. Let T denote the product topology on $X \times Y$. Let T' be the topology generated by set S .

Theorem 15.2. The set

 $\mathcal{S} = \{\pi_1^{-1}(U) \mid U$ is open in $X\} \cup \{\pi_2^{-1}(V) \mid V$ is open in $Y\}$

is a subbasis for the product topology on $X \times Y$. **Proof.** Let T denote the product topology on $X \times Y$. Let T' be the **topology generated by set S**. For open sets $U \subset X$ and $V \subset Y$, we have that $\pi_1^{-1}(U)=U\times Y$ and $\pi_2^{-1}(V)=X\times V$ are elements of the basis for the product topology T (and so are open in T) and hence $S \subset T$. So arbitrary unions (and finite intersections) of elements of S are in T . Therefore, by Lemma 13.1, $\mathcal{T}' \subset \mathcal{T}$.

Theorem 15.2. The set

 $\mathcal{S} = \{\pi_1^{-1}(U) \mid U$ is open in $X\} \cup \{\pi_2^{-1}(V) \mid V$ is open in $Y\}$

is a subbasis for the product topology on $X \times Y$.

Proof. Let T denote the product topology on $X \times Y$. Let T' be the topology generated by set S. For open sets $U \subset X$ and $V \subset Y$, we have that $\pi_1^{-1}(U)=U\times$ Y and $\pi_2^{-1}(V)=X\times V$ are elements of the basis for the product topology T (and so are open in T) and hence $S \subset T$. So arbitrary unions (and finite intersections) of elements of S are in T . Therefore, by Lemma 13.1, $\mathcal{T}' \subset \mathcal{T}$. On the other hand, every basis element $U \times V$ for T is of the form $U \times V = (U \times Y) \cap (X \times V) = \pi_1^{-1}(U) \cap \pi_2^{-1}(V)$ (a finite intersection of elements of $\mathcal S)$ and so is in the topology $\mathcal T'$ generated by $\mathcal S.$ That is, $\mathcal{T} \subset \mathcal{T}'$ and hence $\mathcal{T} = \mathcal{T}'$.

Theorem 15.2. The set

 $\mathcal{S} = \{\pi_1^{-1}(U) \mid U$ is open in $X\} \cup \{\pi_2^{-1}(V) \mid V$ is open in $Y\}$

is a subbasis for the product topology on $X \times Y$.

Proof. Let T denote the product topology on $X \times Y$. Let T' be the topology generated by set S. For open sets $U \subset X$ and $V \subset Y$, we have that $\pi_1^{-1}(U)=U\times$ Y and $\pi_2^{-1}(V)=X\times V$ are elements of the basis for the product topology T (and so are open in T) and hence $S \subset T$. So arbitrary unions (and finite intersections) of elements of S are in T . Therefore, by Lemma 13.1, $\mathcal{T}' \subset \mathcal{T}$. On the other hand, every basis element $U \times V$ for T is of the form $U\times V=(U\times Y)\cap (X\times V)=\pi_1^{-1}(U)\cap \pi_2^{-1}(V)$ (a finite intersection of elements of $\mathcal S)$ and so is in the topology $\mathcal T'$ generated by $\mathcal S.$ That is, $\mathcal{T} \subset \mathcal{T}'$ and hence $\mathcal{T} = \mathcal{T}'$. So the collection of all unions of finite intersections of S is T and S is a subbasis for the product topology T . \Box

Theorem 15.2. The set

 $\mathcal{S} = \{\pi_1^{-1}(U) \mid U$ is open in $X\} \cup \{\pi_2^{-1}(V) \mid V$ is open in $Y\}$

is a subbasis for the product topology on $X \times Y$.

Proof. Let T denote the product topology on $X \times Y$. Let T' be the topology generated by set S. For open sets $U \subset X$ and $V \subset Y$, we have that $\pi_1^{-1}(U)=U\times$ Y and $\pi_2^{-1}(V)=X\times V$ are elements of the basis for the product topology T (and so are open in T) and hence $S \subset T$. So arbitrary unions (and finite intersections) of elements of S are in T . Therefore, by Lemma 13.1, $\mathcal{T}' \subset \mathcal{T}$. On the other hand, every basis element $U \times V$ for T is of the form $U\times V=(U\times Y)\cap (X\times V)=\pi_1^{-1}(U)\cap \pi_2^{-1}(V)$ (a finite intersection of elements of $\mathcal S)$ and so is in the topology $\mathcal T'$ generated by $\mathcal S.$ That is, $\mathcal{T} \subset \mathcal{T}'$ and hence $\mathcal{T} = \mathcal{T}'$. So the collection of all unions of finite intersections of S is T and S is a subbasis for the product topology T . \Box