Introduction to Topology

Chapter 2. Topological Spaces and Continuous Functions Section 17. Closed Sets and Limit Points—Proofs of Theorems

Table of contents

- 1 Theorem 17.1
- 2 Theorem 17.2
- 3 Lemma 17.A
- Theorem 17.4
- 5 Theorem 17.5
- 6 Theorem 17.6
- 7 Theorem 17.7
- **8** Theorem 17.8
- 9 Theorem 17.9
- 10 Theorem 17.10

Theorem 17.1. Let X be a topological space. Then the following conditions hold:

- (1) \varnothing and X are closed.
- (2) Arbitrary intersections of closed sets are closed.
- (3) Finite unions of closed sets are closed

Proof. Since the compliments of \emptyset and X are X and \emptyset , respectively, then by definition of closed, both \emptyset and X are closed (since X and \emptyset are open) and (1) follows.

Given a collection of closed sets $\{A_{\alpha}\}_{\alpha \in J}$, we have be DeMorgan's law (see Munkres' page 11), $X \setminus \bigcap_{\alpha \in J} A_{\alpha} = \bigcup_{\alpha \in J} (X \setminus A_{\alpha})$.

Theorem 17.1. Let X be a topological space. Then the following conditions hold:

- (1) \varnothing and X are closed.
- (2) Arbitrary intersections of closed sets are closed.
- (3) Finite unions of closed sets are closed

Proof. Since the compliments of \emptyset and X are X and \emptyset , respectively, then by definition of closed, both \emptyset and X are closed (since X and \emptyset are open) and (1) follows.

Given a collection of closed sets $\{A_{\alpha}\}_{\alpha \in J}$, we have be DeMorgan's law (see Munkres' page 11), $X \setminus \bigcap_{\alpha \in J} A_{\alpha} = \bigcup_{\alpha \in J} (X \setminus A_{\alpha})$. Since the sets $X \setminus A_{\alpha}$ are open by definition, the right side of this equation is a union of open sets and so is open. Therefore the left hand side is open an so, by definition, its compliment $\bigcap_{\alpha \in J} A_{\alpha}$ is closed, as claimed in (2).

Theorem 17.1. Let X be a topological space. Then the following conditions hold:

- (1) \varnothing and X are closed.
- (2) Arbitrary intersections of closed sets are closed.
- (3) Finite unions of closed sets are closed

Proof. Since the compliments of \emptyset and X are X and \emptyset , respectively, then by definition of closed, both \emptyset and X are closed (since X and \emptyset are open) and (1) follows.

Given a collection of closed sets $\{A_{\alpha}\}_{\alpha \in J}$, we have be DeMorgan's law (see Munkres' page 11), $X \setminus \bigcap_{\alpha \in J} A_{\alpha} = \bigcup_{\alpha \in J} (X \setminus A_{\alpha})$. Since the sets $X \setminus A_{\alpha}$ are open by definition, the right side of this equation is a union of open sets and so is open. Therefore the left hand side is open an so, by definition, its compliment $\bigcap_{\alpha \in J} A_{\alpha}$ is closed, as claimed in (2).

Theorem 17.1 (continued)

Theorem 17.1. Let X be a topological space. Then the following conditions hold:

- (1) \varnothing and X are closed.
- (2) Arbitrary intersections of closed sets are closed.
- (3) Finite unions of closed sets are closed

Proof (continued). If A_i is closed for i = 1, 2, ..., n, then again by DeMorgan's Law, $X \setminus \bigcup_{i=1}^{n} A_i = \bigcap_{i=1}^{n} (X \setminus A_i)$. The set on the right side is a finite intersection of open sets and is therefore open.

Theorem 17.1 (continued)

Theorem 17.1. Let X be a topological space. Then the following conditions hold:

- (1) \varnothing and X are closed.
- (2) Arbitrary intersections of closed sets are closed.
- (3) Finite unions of closed sets are closed

Proof (continued). If A_i is closed for i = 1, 2, ..., n, then again by DeMorgan's Law, $X \setminus \bigcup_{i=1}^{n} A_i = \bigcap_{i=1}^{n} (X \setminus A_i)$. The set on the right side is a finite intersection of open sets and is therefore open. So the left hand side is open and its compliment, $\bigcup_{i=1}^{n} A_i$, is closed, as claimed in (3).

Theorem 17.1 (continued)

Theorem 17.1. Let X be a topological space. Then the following conditions hold:

- (1) \varnothing and X are closed.
- (2) Arbitrary intersections of closed sets are closed.
- (3) Finite unions of closed sets are closed

Proof (continued). If A_i is closed for i = 1, 2, ..., n, then again by DeMorgan's Law, $X \setminus \bigcup_{i=1}^{n} A_i = \bigcap_{i=1}^{n} (X \setminus A_i)$. The set on the right side is a finite intersection of open sets and is therefore open. So the left hand side is open and its compliment, $\bigcup_{i=1}^{n} A_i$, is closed, as claimed in (3).

Theorem 17.2. Let Y be a subspace of X. Then a set A is closed in Y if and only if it equals the intersection of a closed set of X with Y.

Proof. Suppose $A = C \cap Y$ where C is closed in Y. Then $X \setminus C$ is open in X and so $(x \setminus X) \cap Y$ is open in Y (by the definition of the subspace topology).

Theorem 17.2. Let Y be a subspace of X. Then a set A is closed in Y if and only if it equals the intersection of a closed set of X with Y.

Proof. Suppose $A = C \cap Y$ where C is closed in Y. Then $X \setminus C$ is open in X and so $(x \setminus X) \cap Y$ is open in Y (by the definition of the subspace topology). But $(X \setminus C) \cap Y = Y \setminus A$ (the compliment of A is Y), so $Y \setminus A$ is open in Y and hence A is closed in Y.

Theorem 17.2. Let Y be a subspace of X. Then a set A is closed in Y if and only if it equals the intersection of a closed set of X with Y.

Proof. Suppose $A = C \cap Y$ where C is closed in Y. Then $X \setminus C$ is open in X and so $(x \setminus X) \cap Y$ is open in Y (by the definition of the subspace topology). But $(X \setminus C) \cap Y = Y \setminus A$ (the compliment of A is Y), so $Y \setminus A$ is open in Y and hence A is closed in Y.

Conversely, suppose that A is closed in Y. Then $Y \setminus A$ is open in Y (by definition of "A is closed in Y"). So, by definition of "open in $Y \subset X$," there is open U in X such that $Y \setminus A = Y \cap U$.

Theorem 17.2. Let Y be a subspace of X. Then a set A is closed in Y if and only if it equals the intersection of a closed set of X with Y.

Proof. Suppose $A = C \cap Y$ where C is closed in Y. Then $X \setminus C$ is open in X and so $(x \setminus X) \cap Y$ is open in Y (by the definition of the subspace topology). But $(X \setminus C) \cap Y = Y \setminus A$ (the compliment of A is Y), so $Y \setminus A$ is open in Y and hence A is closed in Y.

Conversely, suppose that A is closed in Y. Then $Y \setminus A$ is open in Y (by definition of "A is closed in Y"). So, by definition of "open in $Y \subset X$," there is open U in X such that $Y \setminus A = Y \cap U$. Next, $X \setminus U$ is closed in X and $A = Y \cap (X \setminus U)$ so that A is the intersection of Y and a closed set $X \setminus U$ of X.

Theorem 17.2. Let Y be a subspace of X. Then a set A is closed in Y if and only if it equals the intersection of a closed set of X with Y.

Proof. Suppose $A = C \cap Y$ where C is closed in Y. Then $X \setminus C$ is open in X and so $(x \setminus X) \cap Y$ is open in Y (by the definition of the subspace topology). But $(X \setminus C) \cap Y = Y \setminus A$ (the compliment of A is Y), so $Y \setminus A$ is open in Y and hence A is closed in Y.

Conversely, suppose that A is closed in Y. Then $Y \setminus A$ is open in Y (by definition of "A is closed in Y"). So, by definition of "open in $Y \subset X$," there is open U in X such that $Y \setminus A = Y \cap U$. Next, $X \setminus U$ is closed in X and $A = Y \cap (X \setminus U)$ so that A is the intersection of Y and a closed set $X \setminus U$ of X.

Lemma 17.A

Lemma 17.A. Let A be a subset of topological space X. Then A is open if and only if A = Int(A). A is closed if and only if $A = \overline{A}$.

Proof. If A = Int(A) then, since Int(A) is open, A is open. If A is open then, by the definition of Int(A) as the union of all open subsets contained in A, we have $A \subset Int(A)$.

Lemma 17.A

Lemma 17.A. Let A be a subset of topological space X. Then A is open if and only if A = Int(A). A is closed if and only if $A = \overline{A}$.

Proof. If A = Int(A) then, since Int(A) is open, A is open. If A is open then, by the definition of Int(A) as the union of all open subsets contained in A, we have $A \subset Int(A)$. As commented above, $Int(A) \subset A$ so if A is open then A = Int(A).

Lemma 17.A. Let A be a subset of topological space X. Then A is open if and only if A = Int(A). A is closed if and only if $A = \overline{A}$.

Proof. If A = Int(A) then, since Int(A) is open, A is open. If A is open then, by the definition of Int(A) as the union of all open subsets contained in A, we have $A \subset Int(A)$. As commented above, $Int(A) \subset A$ so if A is open then A = Int(A).

If A = A then, since A is close, \overline{A} is closed. If A is closed then, by the definition of \overline{A} as the intersection of all closed sets containing A, we have $\overline{A} \subset A$.

Lemma 17.A. Let A be a subset of topological space X. Then A is open if and only if A = Int(A). A is closed if and only if $A = \overline{A}$.

Proof. If A = Int(A) then, since Int(A) is open, A is open. If A is open then, by the definition of Int(A) as the union of all open subsets contained in A, we have $A \subset Int(A)$. As commented above, $Int(A) \subset A$ so if A is open then A = Int(A).

If A = A then, since A is close, \overline{A} is closed. If A is closed then, by the definition of \overline{A} as the intersection of all closed sets containing A, we have $\overline{A} \subset A$. As commented above, $A \subset \overline{A}$ so if A is closed the $A = \overline{A}$.

Lemma 17.A. Let A be a subset of topological space X. Then A is open if and only if A = Int(A). A is closed if and only if $A = \overline{A}$.

Proof. If A = Int(A) then, since Int(A) is open, A is open. If A is open then, by the definition of Int(A) as the union of all open subsets contained in A, we have $A \subset Int(A)$. As commented above, $Int(A) \subset A$ so if A is open then A = Int(A).

If A = A then, since A is close, \overline{A} is closed. If A is closed then, by the definition of \overline{A} as the intersection of all closed sets containing A, we have $\overline{A} \subset A$. As commented above, $A \subset \overline{A}$ so if A is closed the $A = \overline{A}$.

Theorem 17.4. Let Y be a subspace of X. Let $A \subset Y$ and denote the closure of A in X as \overline{A} . Then the closure of A in Y equals $\overline{A} \cap Y$.

Proof. Let *B* denote the closure of *A* in *Y*. Since \overline{A} is closed in *X*, then $\overline{A} \cap Y$ is closed in *Y* by Theorem 17.2.

Theorem 17.4. Let Y be a subspace of X. Let $A \subset Y$ and denote the closure of A in X as \overline{A} . Then the closure of A in Y equals $\overline{A} \cap Y$.

Proof. Let *B* denote the closure of *A* in *Y*. Since \overline{A} is closed in *X*, then $\overline{A} \cap Y$ is closed in *Y* by Theorem 17.2. Since $\overline{A} \cap Y$ contains *A* (we are given $A \subset Y$) and since, by definition, *B* equals the intersection of all closed subsets of *Y* containing *A*, so we must have $B \subset \overline{A} \cap Y$.

Theorem 17.4. Let Y be a subspace of X. Let $A \subset Y$ and denote the closure of A in X as \overline{A} . Then the closure of A in Y equals $\overline{A} \cap Y$.

Proof. Let *B* denote the closure of *A* in *Y*. Since \overline{A} is closed in *X*, then $\overline{A} \cap Y$ is closed in *Y* by Theorem 17.2. Since $\overline{A} \cap Y$ contains *A* (we are given $A \subset Y$) and since, by definition, *B* equals the intersection of all closed subsets of *Y* containing *A*, so we must have $B \subset \overline{A} \cap Y$.

On the other hand, m B is closed in Y. Hence by Theorem 17.2, $B = C \cap Y$ for some closed C in X. Then C is a closed set of X containing A (because $A \subset B \subset C$). **Theorem 17.4.** Let Y be a subspace of X. Let $A \subset Y$ and denote the closure of A in X as \overline{A} . Then the closure of A in Y equals $\overline{A} \cap Y$.

Proof. Let *B* denote the closure of *A* in *Y*. Since \overline{A} is closed in *X*, then $\overline{A} \cap Y$ is closed in *Y* by Theorem 17.2. Since $\overline{A} \cap Y$ contains *A* (we are given $A \subset Y$) and since, by definition, *B* equals the intersection of all closed subsets of *Y* containing *A*, so we must have $B \subset \overline{A} \cap Y$.

On the other hand, m B is closed in Y. Hence by Theorem 17.2, $B = C \cap Y$ for some closed C in X. Then C is a closed set of X containing A (because $A \subset B \subset C$). Now \overline{A} is the intersection of all closed sets in X containing A, so $\overline{A} \subset C$. Then $\overline{A} \cap Y \subset C \cap Y = B$. Therefore, $\overline{A} \cap Y = B$, as claimed.

7 / 13

Theorem 17.4. Let Y be a subspace of X. Let $A \subset Y$ and denote the closure of A in X as \overline{A} . Then the closure of A in Y equals $\overline{A} \cap Y$.

Proof. Let *B* denote the closure of *A* in *Y*. Since \overline{A} is closed in *X*, then $\overline{A} \cap Y$ is closed in *Y* by Theorem 17.2. Since $\overline{A} \cap Y$ contains *A* (we are given $A \subset Y$) and since, by definition, *B* equals the intersection of all closed subsets of *Y* containing *A*, so we must have $B \subset \overline{A} \cap Y$.

On the other hand, m B is closed in Y. Hence by Theorem 17.2, $B = C \cap Y$ for some closed C in X. Then C is a closed set of X containing A (because $A \subset B \subset C$). Now \overline{A} is the intersection of all closed sets in X containing A, so $\overline{A} \subset C$. Then $\overline{A} \cap Y \subset C \cap Y = B$. Therefore, $\overline{A} \cap Y = B$, as claimed.

Theorem 17.5 Let A be a subset of the topological space X.

- (a) Then $x \in \overline{A}$ if and only if every neighborhood of x intersects A.
- (b) Supposing the topology of X is given a basis , then $x \in \overline{A}$ if and only if every basis element B containing x intersects A.
- **Proof.** (a) Consider the contrapositive: " $x \notin \overline{A}$ if and only if there is a neighborhood of x that does not intersect A."

Theorem 17.5

Theorem 17.5 Let A be a subset of the topological space X.

- (a) Then $x \in \overline{A}$ if and only if every neighborhood of x intersects A.
- (b) Supposing the topology of X is given a basis, then x ∈ A if and only if every basis element B containing x intersects A.
 Proof. (a) Consider the contrapositive: "x ∉ A if and only if there is a neighborhood of x that does not intersect A." If x ∉ A then the set U = X \ A is a neighborhood of x which does not intersect A, as claimed.

Theorem 17.5 Let A be a subset of the topological space X.

- (a) Then $x \in \overline{A}$ if and only if every neighborhood of x intersects A.
- (b) Supposing the topology of X is given a basis , then x ∈ Ā if and only if every basis element B containing x intersects A.
 Proof. (a) Consider the contrapositive: "x ∉ Ā if and only if there is a neighborhood of x that does not intersect A." If x ∉ Ā then the set U = X \ Ā is a neighborhood of x which does not intersect A, as claimed. Conversely, if there is a neighborhood U of x which does not intersect A, then X \ U is a closed set containing A. By definition of the closure Ā, the set X \ U must contain Ā. Since x ∈ U, then x ∉ Ā

Theorem 17.5 Let A be a subset of the topological space X.

- (a) Then $x \in \overline{A}$ if and only if every neighborhood of x intersects A.
- (b) Supposing the topology of X is given a basis , then $x \in \overline{A}$ if and only if every basis element B containing x intersects A.

Proof. (a) Consider the contrapositive: " $x \notin \overline{A}$ if and only if there is a neighborhood of x that does not intersect A." If $x \notin \overline{A}$ then the set $U = X \setminus \overline{A}$ is a neighborhood of x which does not intersect A, as claimed. Conversely, if there is a neighborhood U of x which does not intersect A, then $X \setminus U$ is a closed set containing A. By definition of the closure \overline{A} , the set $X \setminus U$ must contain \overline{A} . Since $x \in U$, then $x \notin \overline{A}$

(b) Suppose $x \in A$. Then by part (a), every neighborhood of x intersects A. Then every basis element B containing x intersects A (since each B is open).

Theorem 17.5 Let A be a subset of the topological space X.

- (a) Then $x \in \overline{A}$ if and only if every neighborhood of x intersects A.
- (b) Supposing the topology of X is given a basis , then $x \in \overline{A}$ if and only if every basis element B containing x intersects A.

Proof. (a) Consider the contrapositive: " $x \notin \overline{A}$ if and only if there is a neighborhood of x that does not intersect A." If $x \notin \overline{A}$ then the set $U = X \setminus \overline{A}$ is a neighborhood of x which does not intersect A, as claimed. Conversely, if there is a neighborhood U of x which does not intersect A, then $X \setminus U$ is a closed set containing A. By definition of the closure \overline{A} , the set $X \setminus U$ must contain \overline{A} . Since $x \in U$, then $x \notin A$ (b) Suppose $x \in \overline{A}$. Then by part (a), every neighborhood of x intersects A. Then every basis element B containing x intersects A (since each B is open). Conversely, if every basis element containing x intersects A, then so does every neighborhood U of x because U contains a basis element that contains x.

Theorem 17.5 Let A be a subset of the topological space X.

- (a) Then $x \in \overline{A}$ if and only if every neighborhood of x intersects A.
- (b) Supposing the topology of X is given a basis , then $x \in \overline{A}$ if and only if every basis element B containing x intersects A.

Proof. (a) Consider the contrapositive: " $x \notin \overline{A}$ if and only if there is a neighborhood of x that does not intersect A." If $x \notin \overline{A}$ then the set $U = X \setminus \overline{A}$ is a neighborhood of x which does not intersect A, as claimed. Conversely, if there is a neighborhood U of x which does not intersect A, then $X \setminus U$ is a closed set containing A. By definition of the closure \overline{A} , the set $X \setminus U$ must contain \overline{A} . Since $x \in U$, then $x \notin A$ (b) Suppose $x \in \overline{A}$. Then by part (a), every neighborhood of x intersects A. Then every basis element B containing x intersects A (since each B is open). Conversely, if every basis element containing x intersects A, then so does every neighborhood U of x because U contains a basis element that contains x.

Proof. If $x \in A'$ then every neighborhood of x intersects A in a point different from x. Therefore, by Theorem 17.5(a), x belongs to \overline{A} .

Proof. If $x \in A'$ then every neighborhood of x intersects A in a point different from x. Therefore, by Theorem 17.5(a), x belongs to \overline{A} . Hence $A' \subset \overline{A}$. Since $A \subset \overline{A}$, we have $A \cup A' \subset \overline{A}$.

Let $x \in \overline{A}$. If $x \in A$, then $x \in A \cup A'$. If $x \notin A$ then, since $x \in \overline{A}$, every neighborhood U of x intersects A.

Proof. If $x \in A'$ then every neighborhood of x intersects A in a point different from x. Therefore, by Theorem 17.5(a), x belongs to \overline{A} . Hence $A' \subset \overline{A}$. Since $A \subset \overline{A}$, we have $A \cup A' \subset \overline{A}$.

Let $x \in \overline{A}$. If $x \in A$, then $x \in A \cup A'$. If $x \notin A$ then, since $x \in \overline{A}$, every neighborhood U of x intersects A. Because $x \notin A$ then U must intersect Ain a point different from x. Then $x \in A'$ so that $x \in A \cup A'$. Therefore, $\overline{A} \subset A \cup A'$ and hence $\overline{A} = A \cup A'$, as claimed.

Proof. If $x \in A'$ then every neighborhood of x intersects A in a point different from x. Therefore, by Theorem 17.5(a), x belongs to \overline{A} . Hence $A' \subset \overline{A}$. Since $A \subset \overline{A}$, we have $A \cup A' \subset \overline{A}$.

Let $x \in \overline{A}$. If $x \in A$, then $x \in A \cup A'$. If $x \notin A$ then, since $x \in \overline{A}$, every neighborhood U of x intersects A. Because $x \notin A$ then U must intersect Ain a point different from x. Then $x \in A'$ so that $x \in A \cup A'$. Therefore, $\overline{A} \subset A \cup A'$ and hence $\overline{A} = A \cup A'$, as claimed.

Corollary 17.7. A subset of a topological space is closed if and only if it contains all its limit points.

Proof. The set A is closed if and only if $A = \overline{A}$ by Lemma 17.A. By Theorem 17.6, $\overline{A} = A \cup A'$, so $A = \overline{A}$ if and only if $A' \subset A$.

Corollary 17.7. A subset of a topological space is closed if and only if it contains all its limit points.

Proof. The set A is closed if and only if $A = \overline{A}$ by Lemma 17.A. By Theorem 17.6, $\overline{A} = A \cup A'$, so $A = \overline{A}$ if and only if $A' \subset A$.

Proof. Consider the set $\{x_0\}$. If $x \in X$ where $x \neq x_0$ then, since X is a Hausdorff space, there are disjoint neighborhoods U of x and V of x_0 .

Proof. Consider the set $\{x_0\}$. If $x \in X$ where $x \neq x_0$ then, since X is a Hausdorff space, there are disjoint neighborhoods U of x and V of x_0 . Since U does not intersect $\{x_0\}$, by Theorem 17.5(a), x is not in the closure of set $\{x_0\}$. Since $x \neq x_0$ is an arbitrary element of X, the only points of closure of $\{x_0\}$ is x_0 itself and so by Corollary 17.7 $\{x_0\}$ is a closed set.

Proof. Consider the set $\{x_0\}$. If $x \in X$ where $x \neq x_0$ then, since X is a Hausdorff space, there are disjoint neighborhoods U of x and V of x_0 . Since U does not intersect $\{x_0\}$, by Theorem 17.5(a), x is not in the closure of set $\{x_0\}$. Since $x \neq x_0$ is an arbitrary element of X, the only points of closure of $\{x_0\}$ is x_0 itself and so by Corollary 17.7 $\{x_0\}$ is a closed set. Now if we consider a finite point set, say $\{x_0, x_1, \ldots, x_n\}$, then we simply write the set as $\{x_0\} \cup \{x_1\} \cup \cdots \cup \{x_n\}$, observe that each $\{x_i\}$ is closed, and apply Theorem 17.1 part (3).

Introduction to Topology

Proof. Consider the set $\{x_0\}$. If $x \in X$ where $x \neq x_0$ then, since X is a Hausdorff space, there are disjoint neighborhoods U of x and V of x_0 . Since U does not intersect $\{x_0\}$, by Theorem 17.5(a), x is not in the closure of set $\{x_0\}$. Since $x \neq x_0$ is an arbitrary element of X, the only points of closure of $\{x_0\}$ is x_0 itself and so by Corollary 17.7 $\{x_0\}$ is a closed set. Now if we consider a finite point set, say $\{x_0, x_1, \ldots, x_n\}$, then we simply write the set as $\{x_0\} \cup \{x_1\} \cup \cdots \cup \{x_n\}$, observe that each $\{x_i\}$ is closed, and apply Theorem 17.1 part (3).

Theorem 17.9. Let X be a space satisfying the " T_1 Axiom" (namely, that all finite point sets are closed). Let A be a subset of X. Then x is a limit point of A if and only if every neighborhood of x contains infinitely many points of A.

Proof. Suppose every neighborhood of x intersects A in infinitely many points. Then every neighborhood of x intersects set A at a point other than x and so (by definition) x is a limit point of A.

Theorem 17.9. Let X be a space satisfying the " T_1 Axiom" (namely, that all finite point sets are closed). Let A be a subset of X. Then x is a limit point of A if and only if every neighborhood of x contains infinitely many points of A.

Proof. Suppose every neighborhood of x intersects A in infinitely many points. Then every neighborhood of x intersects set A at a point other than x and so (by definition) x is a limit point of A.

Conversely, suppose that x is a limit point of A. ASSUME some neighborhood U of x intersects A in only finitely many points. Then U also intersects $A \setminus \{x\}$ in finitely many points, say $\{x_1, x_2, \ldots, x_m\} = U \cap (A \setminus \{x\})$.

Theorem 17.9. Let X be a space satisfying the " T_1 Axiom" (namely, that all finite point sets are closed). Let A be a subset of X. Then x is a limit point of A if and only if every neighborhood of x contains infinitely many points of A.

Proof. Suppose every neighborhood of x intersects A in infinitely many points. Then every neighborhood of x intersects set A at a point other than x and so (by definition) x is a limit point of A. Conversely, suppose that x is a limit point of A. ASSUME some neighborhood U of x intersects A in only finitely many points. Then U also intersects $A \setminus \{x\}$ in finitely many points, say $\{x_1, x_2, \ldots, x_m\}$ = $U \cap (A \setminus \{x\})$. The set $X \setminus \{x_1, x_2, \ldots, x_m\}$ is open in X since by T_1 Axiom $\{x_1, x_2, \ldots, x_m\}$ is closed. Then $U \cap (X \setminus \{x_1, x_2, \ldots, x_m\})$ is a neighborhood of x that does not intersect the set $A \setminus \{x\}$. But this CONTRADICTS the hypothesis that x is a limit point of x.

Theorem 17.9. Let X be a space satisfying the " T_1 Axiom" (namely, that all finite point sets are closed). Let A be a subset of X. Then x is a limit point of A if and only if every neighborhood of x contains infinitely many points of A.

Proof. Suppose every neighborhood of x intersects A in infinitely many points. Then every neighborhood of x intersects set A at a point other than x and so (by definition) x is a limit point of A. Conversely, suppose that x is a limit point of A. ASSUME some neighborhood U of x intersects A in only finitely many points. Then Ualso intersects $A \setminus \{x\}$ in finitely many points, say $\{x_1, x_2, \ldots, x_m\}$ $= U \cap (A \setminus \{x\})$. The set $X \setminus \{x_1, x_2, \dots, x_m\}$ is open in X since by T_1 Axiom $\{x_1, x_2, \ldots, x_m\}$ is closed. Then $U \cap (X \setminus \{x_1, x_2, \ldots, x_m\})$ is a neighborhood of x that does not intersect the set $A \setminus \{x\}$. But this CONTRADICTS the hypothesis that x is a limit point of x. So the assumption that U intersects A in finitely many points is false. That is, any neighborhood of x must intersect A in infinitely many points.

()

Theorem 17.9. Let X be a space satisfying the " T_1 Axiom" (namely, that all finite point sets are closed). Let A be a subset of X. Then x is a limit point of A if and only if every neighborhood of x contains infinitely many points of A.

Proof. Suppose every neighborhood of x intersects A in infinitely many points. Then every neighborhood of x intersects set A at a point other than x and so (by definition) x is a limit point of A. Conversely, suppose that x is a limit point of A. ASSUME some neighborhood U of x intersects A in only finitely many points. Then Ualso intersects $A \setminus \{x\}$ in finitely many points, say $\{x_1, x_2, \ldots, x_m\}$ $= U \cap (A \setminus \{x\})$. The set $X \setminus \{x_1, x_2, \dots, x_m\}$ is open in X since by T_1 Axiom $\{x_1, x_2, \ldots, x_m\}$ is closed. Then $U \cap (X \setminus \{x_1, x_2, \ldots, x_m\})$ is a neighborhood of x that does not intersect the set $A \setminus \{x\}$. But this CONTRADICTS the hypothesis that x is a limit point of x. So the assumption that U intersects A in finitely many points is false. That is, any neighborhood of x must intersect A in infinitely many points.

()

Theorem 17.10. If X is a Hausdorff space, then a sequence of points of X converges to at most one point of X.

Proof. Let x_n be a sequence of points of X that converges to x. If $y \neq x$, let U and V be disjoint neighborhoods of x and y, respectively. Since U is a neighborhood of x, then there is $N_1 \in \mathbb{N}$ such that $x_n \in U$ for all $n \geq N_1$.

- **Theorem 17.10.** If X is a Hausdorff space, then a sequence of points of X converges to at most one point of X.
- **Proof.** Let x_n be a sequence of points of X that converges to x. If $y \neq x$, let U and V be disjoint neighborhoods of x and y, respectively. Since U is a neighborhood of x, then there is $N_1 \in \mathbb{N}$ such that $x_n \in U$ for all $n \geq N_1$. So there is no $N_2 \in \mathbb{N}$ such that for $n \geq N_2$ we have $x_n \in V$ (since for $n \geq N_1$, $x_n \in U$ and $U \cap V = \emptyset$). That is, x_n does not converge to $y \neq x$ and x_n converges to at most one point in X.

Theorem 17.10. If X is a Hausdorff space, then a sequence of points of X converges to at most one point of X.

Proof. Let x_n be a sequence of points of X that converges to x. If $y \neq x$, let U and V be disjoint neighborhoods of x and y, respectively. Since U is a neighborhood of x, then there is $N_1 \in \mathbb{N}$ such that $x_n \in U$ for all $n \geq N_1$. So there is no $N_2 \in \mathbb{N}$ such that for $n \geq N_2$ we have $x_n \in V$ (since for $n \geq N_1$, $x_n \in U$ and $U \cap V = \emptyset$). That is, x_n does not converge to $y \neq x$ and x_n converges to at most one point in X.