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Theorem 17.1

Theorem 17.1. Let X be a topological space. Then the following
conditions hold:

(1) @ and X are closed.
(2) Arbitrary intersections of closed sets are closed.

(3) Finite unions of closed sets are closed
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Theorem 17.1

Theorem 17.1. Let X be a topological space. Then the following
conditions hold:

(1) @ and X are closed.
(2) Arbitrary intersections of closed sets are closed.

(3) Finite unions of closed sets are closed

Proof. Since the compliments of @ and X are X and @, respectively, then
by definition of closed, both @ and X are closed (since X and & are open)
and (1) follows.

Given a collection of closed sets {Aq }ac, we have be DeMorgan'’s law
(see Munkres' page 11), X \ NpesAa = Uacs (X \ An).
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Theorem 17.1

Theorem 17.1. Let X be a topological space. Then the following
conditions hold:

(1) @ and X are closed.

(2) Arbitrary intersections of closed sets are closed.

(3) Finite unions of closed sets are closed

Proof. Since the compliments of @ and X are X and @, respectively, then
by definition of closed, both @ and X are closed (since X and & are open)
and (1) follows.

Given a collection of closed sets {Aq }ac, we have be DeMorgan'’s law
(see Munkres' page 11), X \ NpesAa = Uacs(X \ An). Since the sets

X \ Aq are open by definition, the right side of this equation is a union of
open sets and so is open. Therefore the left hand side is open an so, by
definition, its compliment N, A, is closed, as claimed in (2).
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Theorem 17.1 (continued)

Theorem 17.1. Let X be a topological space. Then the following
conditions hold:

(1) @ and X are closed.
(2) Arbitrary intersections of closed sets are closed.

(3) Finite unions of closed sets are closed
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Theorem 17.1

Theorem 17.1 (continued)

Theorem 17.1. Let X be a topological space. Then the following
conditions hold:

(1) @ and X are closed.

(2) Arbitrary intersections of closed sets are closed.

(3) Finite unions of closed sets are closed

Proof (continued). If A; is closed for i = 1,2,..., n, then again by
DeMorgan's Law, X \ U?_;A; = N, (X \ A;). The set on the right side is
a finite intersection of open sets and is therefore open.
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Theorem 17.1 (continued)

Theorem 17.1. Let X be a topological space. Then the following
conditions hold:

(1) @ and X are closed.
(2) Arbitrary intersections of closed sets are closed.

(3) Finite unions of closed sets are closed

Proof (continued). If A; is closed for i = 1,2,..., n, then again by
DeMorgan's Law, X \ U?_;A; = N, (X \ A;). The set on the right side is
a finite intersection of open sets and is therefore open. So the left hand
side is open and its compliment, U?_; A;, is closed, as claimed in (3). [
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Theorem 17.2

Theorem 17.2

Theorem 17.2. Let Y be a subspace of X. Then a set A is closed in Y if
and only if it equals the intersection of a closed set of X with Y.
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Theorem 17.2

Theorem 17.2

Theorem 17.2. Let Y be a subspace of X. Then a set A is closed in Y if
and only if it equals the intersection of a closed set of X with Y.

Proof. Suppose A= CN Y where C is closed in Y. Then X \ C is open

in X and so (x \ X) N Y is open in Y (by the definition of the subspace
topology).
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Theorem 17.2

Theorem 17.2

Theorem 17.2. Let Y be a subspace of X. Then a set A is closed in Y if
and only if it equals the intersection of a closed set of X with Y.

Proof. Suppose A= CN Y where C is closed in Y. Then X \ C is open
in X and so (x \ X) N Y is open in Y (by the definition of the subspace
topology). But (X\ C)NY = Y \ A (the compliment of Ais Y), so

Y \ Ais open in Y and hence A is closed in Y.
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Theorem 17.2

Theorem 17.2. Let Y be a subspace of X. Then a set A is closed in Y if
and only if it equals the intersection of a closed set of X with Y.

Proof. Suppose A= CN Y where C is closed in Y. Then X \ C is open
in X and so (x \ X) N Y is open in Y (by the definition of the subspace
topology). But (X\ C)NY = Y \ A (the compliment of Ais Y), so

Y \ Ais open in Y and hence A is closed in Y.

Conversely, suppose that A is closed in Y. Then Y \ Ais open in Y (by
definition of “A is closed in Y"). So, by definition of “open in Y C X"
there is open U in X such that Y\ A=Y nNU.
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Theorem 17.2

Theorem 17.2

Theorem 17.2. Let Y be a subspace of X. Then a set A is closed in Y if
and only if it equals the intersection of a closed set of X with Y.

Proof. Suppose A= CN Y where C is closed in Y. Then X \ C is open
in X and so (x \ X) N Y is open in Y (by the definition of the subspace
topology). But (X\ C)NY = Y \ A (the compliment of Ais Y), so

Y \ Ais open in Y and hence A is closed in Y.

Conversely, suppose that A is closed in Y. Then Y \ Ais open in Y (by
definition of “A is closed in Y"). So, by definition of “open in Y C X"
there is open U in X such that Y\ A= Y NU. Next, X\ U is closed in X
and A=Y N (X\ U) so that A is the intersection of Y and a closed set
X\ U of X. O
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Lemma 17.A

Lemma 17.A. Let A be a subset of topological space X. Then A is open
if and only if A = Int(A). Ais closed if and only if A= A.
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Lemma 17.A

Lemma 17.A. Let A be a subset of topological space X. Then A is open
if and only if A = Int(A). Ais closed if and only if A= A.

Proof. If A= Int(A) then, since Int(A) is open, A is open. If A is open
then, by the definition of Int(A) as the union of all open subsets contained
in A, we have A C Int(A).
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Lemma 17.A

Lemma 17.A. Let A be a subset of topological space X. Then A is open
if and only if A = Int(A). Ais closed if and only if A= A.

Proof. If A= Int(A) then, since Int(A) is open, A is open. If A is open
then, by the definition of Int(A) as the union of all open subsets contained
in A, we have A C Int(A). As commented above, Int(A) C Aso if Ais
open then A = Int(A).
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Lemma 17.A

Lemma 17.A. Let A be a subset of topological space X. Then A is open
if and only if A = Int(A). Ais closed if and only if A= A.

Proof. If A= Int(A) then, since Int(A) is open, A is open. If A is open
then, by the definition of Int(A) as the union of all open subsets contained
in A, we have A C Int(A). As commented above, Int(A) C Aso if Ais
open then A = Int(A).

If A= A then, since A is close, A is closed. If A is closed then, by the
definition of A as the intersection of all closed sets containing A, we have
AC A.
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Lemma 17.A

Lemma 17.A. Let A be a subset of topological space X. Then A is open
if and only if A = Int(A). Ais closed if and only if A= A.

Proof. If A= Int(A) then, since Int(A) is open, A is open. If A is open
then, by the definition of Int(A) as the union of all open subsets contained
in A, we have A C Int(A). As commented above, Int(A) C Aso if Ais
open then A = Int(A).

If A= A then, since A is close, A is closed. If A is closed then, by the
definition of A as the intersection of all closed sets containing A, we have
A C A. As commented above, A C A so if A is closed the A = A. O
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Theorem 17.4

Theorem 17.4. Let Y be a subspace of X. Let A C Y and denote the
closure of Ain X as A. Then the closure of Ain Y equals ANY.
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Theorem 17.4

Theorem 17.4. Let Y be a subspace of X. Let A C Y and denote the
closure of Ain X as A. Then the closure of Ain Y equals ANY.

Proof. Let B denote the closure of A in Y. Since A is closed in X, then
ANY is closed in Y by Theorem 17.2.
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Theorem 17.4

Theorem 17.4. Let Y be a subspace of X. Let A C Y and denote the
closure of Ain X as A. Then the closure of Ain Y equals ANY.

Proof. Let B denote the closure of A in Y. Since A is closed in X, then
ANY isclosed in Y by Theorem 17.2. Since AN Y contains A (we are
given A C Y) and since, by definition, B equals the intersection of all
closed subsets of Y containing A, so we must have BC ANY.
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Theorem 17.4

Theorem 17.4. Let Y be a subspace of X. Let A C Y and denote the
closure of Ain X as A. Then the closure of Ain Y equals ANY.

Proof. Let B denote the closure of A in Y. Since A is closed in X, then
ANY isclosed in Y by Theorem 17.2. Since AN Y contains A (we are
given A C Y) and since, by definition, B equals the intersection of all
closed subsets of Y containing A, so we must have BC ANY.

On the other hand,m B is closed in Y. Hence by Theorem 17.2,
B=CnNY forsome closed C in X. Then C is a closed set of X
containing A (because A C B C C).
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Theorem 17.4

Theorem 17.4. Let Y be a subspace of X. Let A C Y and denote the
closure of Ain X as A. Then the closure of Ain Y equals ANY.

Proof. Let B denote the closure of A in Y. Since A is closed in X, then
ANY isclosed in Y by Theorem 17.2. Since AN Y contains A (we are
given A C Y) and since, by definition, B equals the intersection of all
closed subsets of Y containing A, so we must have BC ANY.

On the other hand,m B is closed in Y. Hence by Theorem 17.2,

B=CnNY forsome closed C in X. Then C is a closed set of X
containing A (because A C B C C). Now A is the intersection of all
closed sets in X containing A, so AC C. Then ANY CCNY =B.
Therefore, AN'Y = B, as claimed. O
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Theorem 17.5

Theorem 17.5 Let A be a subset of the topological space X.

(a) Then x € A if and only if every neighborhood of x intersects
A.

(b) Supposing the topology of X is given a basis , then x € A if
and only if every basis element B containing x intersects A.
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Theorem 17.5

Theorem 17.5 Let A be a subset of the topological space X.

(a) Then x € A if and only if every neighborhood of x intersects
A.

(b) Supposing the topology of X is given a basis , then x € A if
and only if every basis element B containing x intersects A.

Proof. (a) Consider the contrapositive: “x ¢ A if and only if there is a
neighborhood of x that does not intersect A.”
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Theorem 17.5

Theorem 17.5 Let A be a subset of the topological space X.

(a) Then x € A if and only if every neighborhood of x intersects
A.
(b) Supposing the topology of X is given a basis , then x € A if
and only if every basis element B containing x intersects A.
Proof. (a) Consider the contrapositive: “x ¢ A if and only if there is a
neighborhood of x that does not intersect A." If x ¢ A then the set
U=X\ Alis a neighborhood of x which does not intersect A, as claimed.
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Theorem 17.5

Theorem 17.5 Let A be a subset of the topological space X.
(a) Then x € A if and only if every neighborhood of x intersects
A.
(b) Supposing the topology of X is given a basis , then x € A if
and only if every basis element B containing x intersects A.
Proof. (a) Consider the contrapositive: “x ¢ A if and only if there is a
neighborhood of x that does not intersect A." If x ¢ A then the set
U=X\ Alis a neighborhood of x which does not intersect A, as claimed.
Conversely, if there is a neighborhood U of x which does not intersect A,
then X \ U is a closed set containing A. By definition of the closure A, the
set X \ U must contain A. Since x € U, then x ¢ A
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Theorem 17.5

Theorem 17.5 Let A be a subset of the topological space X.
(a) Then x € A if and only if every neighborhood of x intersects
A.
(b) Supposing the topology of X is given a basis , then x € A if
and only if every basis element B containing x intersects A.
Proof. (a) Consider the contrapositive: “x ¢ A if and only if there is a
neighborhood of x that does not intersect A." If x ¢ A then the set
U=X\ Alis a neighborhood of x which does not intersect A, as claimed.
Conversely, if there is a neighborhood U of x which does not intersect A,
then X \ U is a closed set containing A. By definition of the closure A, the
set X \ U must contain A. Since x € U, then x ¢ A
(b) Suppose x € A. Then by part (a), every neighborhood of x intersects
A. Then every basis element B containing x intersects A (since each B is
open).
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Theorem 17.5

Theorem 17.5 Let A be a subset of the topological space X.
(a) Then x € A if and only if every neighborhood of x intersects
A.
(b) Supposing the topology of X is given a basis , then x € A if
and only if every basis element B containing x intersects A.
Proof. (a) Consider the contrapositive: “x ¢ A if and only if there is a
neighborhood of x that does not intersect A." If x ¢ A then the set
U=X\ Alis a neighborhood of x which does not intersect A, as claimed.
Conversely, if there is a neighborhood U of x which does not intersect A,
then X \ U is a closed set containing A. By definition of the closure A, the
set X \ U must contain A. Since x € U, then x ¢ A
(b) Suppose x € A. Then by part (a), every neighborhood of x intersects
A. Then every basis element B containing x intersects A (since each B is
open). Conversely, if every basis element containing x intersects A, then
so does every neighborhood U of x because U contains a basis element
that contains x. Ol
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Theorem 17.6

Theorem 17.6 Let A be a subset of the topological space X. Let A’ be
the set of all limit points of A. Then A= AUA’.
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Theorem 17.6

Theorem 17.6 Let A be a subset of the topological space X. Let A’ be
the set of all limit points of A. Then A= AUA’.

Proof. If x € A’ then every neighborhood of x intersects A in a point
different from x. Therefore, by Theorem 17.5(a), x belongs to A.
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Theorem 17.6

Theorem 17.6

Theorem 17.6 Let A be a subset of the topological space X. Let A’ be
the set of all limit points of A. Then A= AUA’.

Proof. If x € A’ then every neighborhood of x intersects A in a point
different from x. Therefore, by Theorem 17.5(a), x belongs to A. Hence
A" C A. Since AC A, we have AUA' C A.

Let x € A. If x € A then x € AUA'. If x ¢ A then, since x € A, every
neighborhood U of x intersects A.

Introduction to Topology June 3, 2016 9 /13



Theorem 17.6

Theorem 17.6 Let A be a subset of the topological space X. Let A’ be
the set of all limit points of A. Then A= AUA’.

Proof. If x € A’ then every neighborhood of x intersects A in a point
different from x. Therefore, by Theorem 17.5(a), x belongs to A. Hence
A" C A. Since AC A, we have AUA' C A.

Let x € A. If x € A then x € AUA'. If x ¢ A then, since x € A, every
neighborhood U of x intersects A. Because x ¢ A then U must intersect A
in a point different from x. Then x € A’ so that x € AU A’. Therefore,
AcC AUA and hence A= AU A, as claimed. O
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Theorem 17.7

Corollary 17.7. A subset of a topological space is closed if and only if it
contains all its limit points.
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Theorem 17.7

Corollary 17.7. A subset of a topological space is closed if and only if it
contains all its limit points.

Proof. The set A is closed if and only if A= A by Lemma 17.A. By
Theorem 17.6, A= AUA’, so A= Aif and only if A’ C A. O
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Theorem 17.8

Theorem 17.8. Every finite point set in a Hausdorff space X is closed. In
particular, singletons form closed sets in a Hausdorff space.
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Theorem 17.8

Theorem 17.8

Theorem 17.8. Every finite point set in a Hausdorff space X is closed. In
particular, singletons form closed sets in a Hausdorff space.

Proof. Consider the set {xo}. If x € X where x # xp then, since X is a
Hausdorff space, there are disjoint neighborhoods U of x and V of xp.

Introduction to Topology June 3, 2016 11 /13



Theorem 17.8

Theorem 17.8. Every finite point set in a Hausdorff space X is closed. In
particular, singletons form closed sets in a Hausdorff space.

Proof. Consider the set {xo}. If x € X where x # xp then, since X is a
Hausdorff space, there are disjoint neighborhoods U of x and V of xp.
Since U does not intersect {xo}, by Theorem 17.5(a), x is not in the
closure of set {xo}. Since x # xg is an arbitrary element of X, the only
points of closure of {xp} is xp itself and so by Corollary 17.7 {xp} is a
closed set.
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Theorem 17.8

Theorem 17.8. Every finite point set in a Hausdorff space X is closed. In
particular, singletons form closed sets in a Hausdorff space.

Proof. Consider the set {xo}. If x € X where x # xp then, since X is a
Hausdorff space, there are disjoint neighborhoods U of x and V of xp.
Since U does not intersect {xo}, by Theorem 17.5(a), x is not in the
closure of set {xo}. Since x # xg is an arbitrary element of X, the only
points of closure of {xp} is xp itself and so by Corollary 17.7 {xp} is a

closed set. Now if we consider a finite point set, say {xo, x1,...,Xn}, then
we simply write the set as {xo} U {x1} U---U{xy}, observe that each {x;}
is closed, and apply Theorem 17.1 part (3). O
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Theorem 17.9
Theorem 17.9. Let X be a space satisfying the “T; Axiom” (namely,

that all finite point sets are closed). Let A be a subset of X. Then x is a

limit point of A if and only if every neighborhood of x contains infinitely
many points of A.
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Theorem 17.9

Theorem 17.9. Let X be a space satisfying the “T; Axiom” (namely,
that all finite point sets are closed). Let A be a subset of X. Then x is a
limit point of A if and only if every neighborhood of x contains infinitely
many points of A.

Proof. Suppose every neighborhood of x intersects A in infinitely many
points. Then every neighborhood of x intersects set A at a point other
than x and so (by definition) x is a limit point of A.
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Theorem 17.9

Theorem 17.9. Let X be a space satisfying the “T; Axiom” (namely,
that all finite point sets are closed). Let A be a subset of X. Then x is a
limit point of A if and only if every neighborhood of x contains infinitely
many points of A.

Proof. Suppose every neighborhood of x intersects A in infinitely many
points. Then every neighborhood of x intersects set A at a point other
than x and so (by definition) x is a limit point of A.

Conversely, suppose that x is a limit point of A. ASSUME some
neighborhood U of x intersects A in only finitely many points. Then U
also intersects A\ {x} in finitely many points, say {x1,x2,...,Xm}

—UN(A\ {x)).
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Theorem 17.9

Theorem 17.9. Let X be a space satisfying the “T; Axiom” (namely,
that all finite point sets are closed). Let A be a subset of X. Then x is a
limit point of A if and only if every neighborhood of x contains infinitely
many points of A.

Proof. Suppose every neighborhood of x intersects A in infinitely many
points. Then every neighborhood of x intersects set A at a point other
than x and so (by definition) x is a limit point of A.

Conversely, suppose that x is a limit point of A. ASSUME some
neighborhood U of x intersects A in only finitely many points. Then U
also intersects A\ {x} in finitely many points, say {x1,x2,...,Xm}
=UN(A\{x}). Theset X \ {x1,x2,...,xm} is open in X since by Ty
Axiom {x1,x2,...,Xm} is closed. Then UN (X \ {x1,x2,...,xm}) is a
neighborhood of x that does not intersect the set A\ {x}. But this
CONTRADICTS the hypothesis that x is a limit point of x.
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Theorem 17.9

Theorem 17.9. Let X be a space satisfying the “T; Axiom” (namely,
that all finite point sets are closed). Let A be a subset of X. Then x is a
limit point of A if and only if every neighborhood of x contains infinitely
many points of A.

Proof. Suppose every neighborhood of x intersects A in infinitely many
points. Then every neighborhood of x intersects set A at a point other
than x and so (by definition) x is a limit point of A.

Conversely, suppose that x is a limit point of A. ASSUME some
neighborhood U of x intersects A in only finitely many points. Then U
also intersects A\ {x} in finitely many points, say {x1,x2,...,Xm}
=UN(A\{x}). Theset X \ {x1,x2,...,xm} is open in X since by Ty
Axiom {x1,x2,...,Xm} is closed. Then UN (X \ {x1,x2,...,xm}) is a
neighborhood of x that does not intersect the set A\ {x}. But this
CONTRADICTS the hypothesis that x is a limit point of x. So the
assumption that U intersects A in finitely many points is false. That is,
any neighborhood of x must intersect A in infinitely many points. O
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Theorem 17.10

Theorem 17.10. If X is a Hausdorff space, then a sequence of points of
X converges to at most one point of X.
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Theorem 17.10

Theorem 17.10

Theorem 17.10. If X is a Hausdorff space, then a sequence of points of
X converges to at most one point of X.

Proof. Let x, be a sequence of points of X that converges to x. If y # x,
let U and V be disjoint neighborhoods of x and y, respectively. Since U is

a neighborhood of x, then there is N; € N such that x, € U for all
n Z Nl.
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Theorem 17.10

Theorem 17.10. If X is a Hausdorff space, then a sequence of points of
X converges to at most one point of X.

Proof. Let x, be a sequence of points of X that converges to x. If y # x,
let U and V be disjoint neighborhoods of x and y, respectively. Since U is
a neighborhood of x, then there is N; € N such that x, € U for all

n > Nj. So there is no Nb € N such that for n > N> we have x, € V
(since for n > Ny, x, € U and UNV = ©). That is, x, does not converge
to y # x and x, converges to at most one point in X. Ol
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