
Introduction to Topology

June 3, 2016

Chapter 2. Topological Spaces and Continuous Functions
Section 17. Closed Sets and Limit Points—Proofs of Theorems

() Introduction to Topology June 3, 2016 1 / 13



Table of contents

1 Theorem 17.1

2 Theorem 17.2

3 Lemma 17.A

4 Theorem 17.4

5 Theorem 17.5

6 Theorem 17.6

7 Theorem 17.7

8 Theorem 17.8

9 Theorem 17.9

10 Theorem 17.10

() Introduction to Topology June 3, 2016 2 / 13



Theorem 17.1

Theorem 17.1

Theorem 17.1. Let X be a topological space. Then the following
conditions hold:

(1) ∅ and X are closed.

(2) Arbitrary intersections of closed sets are closed.

(3) Finite unions of closed sets are closed

Proof. Since the compliments of ∅ and X are X and ∅, respectively, then
by definition of closed, both ∅ and X are closed (since X and ∅ are open)
and (1) follows.

Given a collection of closed sets {Aα}α∈J , we have be DeMorgan’s law
(see Munkres’ page 11), X \ ∩α∈JAα = ∪α∈J(X \ Aα).

Since the sets
X \ Aα are open by definition, the right side of this equation is a union of
open sets and so is open. Therefore the left hand side is open an so, by
definition, its compliment ∩α∈JAα is closed, as claimed in (2).
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Theorem 17.1

Theorem 17.1 (continued)

Theorem 17.1. Let X be a topological space. Then the following
conditions hold:

(1) ∅ and X are closed.

(2) Arbitrary intersections of closed sets are closed.

(3) Finite unions of closed sets are closed

Proof (continued). If Ai is closed for i = 1, 2, . . . , n, then again by
DeMorgan’s Law, X \ ∪n

i=1Ai = ∩n
i=1(X \ Ai ). The set on the right side is

a finite intersection of open sets and is therefore open.

So the left hand
side is open and its compliment, ∪n

i=1Ai , is closed, as claimed in (3).
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Theorem 17.2

Theorem 17.2

Theorem 17.2. Let Y be a subspace of X . Then a set A is closed in Y if
and only if it equals the intersection of a closed set of X with Y .

Proof. Suppose A = C ∩ Y where C is closed in Y . Then X \ C is open
in X and so (x \ X ) ∩ Y is open in Y (by the definition of the subspace
topology).

But (X \ C ) ∩ Y = Y \ A (the compliment of A is Y ), so
Y \ A is open in Y and hence A is closed in Y .

Conversely, suppose that A is closed in Y . Then Y \ A is open in Y (by
definition of “A is closed in Y ”). So, by definition of “open in Y ⊂ X ,”
there is open U in X such that Y \A = Y ∩U. Next, X \U is closed in X
and A = Y ∩ (X \ U) so that A is the intersection of Y and a closed set
X \ U of X .
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Lemma 17.A

Lemma 17.A

Lemma 17.A. Let A be a subset of topological space X . Then A is open
if and only if A = Int(A). A is closed if and only if A = A.

Proof. If A = Int(A) then, since Int(A) is open, A is open. If A is open
then, by the definition of Int(A) as the union of all open subsets contained
in A, we have A ⊂ Int(A).

As commented above, Int(A) ⊂ A so if A is
open then A = Int(A).

If A = A then, since A is close, A is closed. If A is closed then, by the
definition of A as the intersection of all closed sets containing A, we have
A ⊂ A. As commented above, A ⊂ A so if A is closed the A = A.
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Theorem 17.4

Theorem 17.4

Theorem 17.4. Let Y be a subspace of X . Let A ⊂ Y and denote the
closure of A in X as A. Then the closure of A in Y equals A ∩ Y .

Proof. Let B denote the closure of A in Y . Since A is closed in X , then
A ∩ Y is closed in Y by Theorem 17.2.

Since A ∩ Y contains A (we are
given A ⊂ Y ) and since, by definition, B equals the intersection of all
closed subsets of Y containing A, so we must have B ⊂ A ∩ Y .

On the other hand,m B is closed in Y . Hence by Theorem 17.2,
B = C ∩ Y for some closed C in X . Then C is a closed set of X
containing A (because A ⊂ B ⊂ C ). Now A is the intersection of all
closed sets in X containing A, so A ⊂ C . Then A ∩ Y ⊂ C ∩ Y = B.
Therefore, A ∩ Y = B, as claimed.
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Theorem 17.5

Theorem 17.5

Theorem 17.5 Let A be a subset of the topological space X .

(a) Then x ∈ A if and only if every neighborhood of x intersects
A.

(b) Supposing the topology of X is given a basis , then x ∈ A if
and only if every basis element B containing x intersects A.

Proof. (a) Consider the contrapositive: “x /∈ A if and only if there is a
neighborhood of x that does not intersect A.”

If x /∈ A then the set
U = X \ A is a neighborhood of x which does not intersect A, as claimed.
Conversely, if there is a neighborhood U of x which does not intersect A,
then X \U is a closed set containing A. By definition of the closure A, the
set X \ U must contain A. Since x ∈ U, then x /∈ A
(b) Suppose x ∈ A. Then by part (a), every neighborhood of x intersects
A. Then every basis element B containing x intersects A (since each B is
open). Conversely, if every basis element containing x intersects A, then
so does every neighborhood U of x because U contains a basis element
that contains x .
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Theorem 17.6

Theorem 17.6 Let A be a subset of the topological space X . Let A′ be
the set of all limit points of A. Then A = A ∪ A′.

Proof. If x ∈ A′ then every neighborhood of x intersects A in a point
different from x . Therefore, by Theorem 17.5(a), x belongs to A.

Hence
A′ ⊂ A. Since A ⊂ A, we have A ∪ A′ ⊂ A.

Let x ∈ A. If x ∈ A, then x ∈ A ∪ A′. If x /∈ A then, since x ∈ A, every
neighborhood U of x intersects A. Because x /∈ A then U must intersect A
in a point different from x . Then x ∈ A′ so that x ∈ A ∪ A′. Therefore,
A ⊂ A ∪ A′ and hence A = A ∪ A′, as claimed.
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Theorem 17.7

Theorem 17.7

Corollary 17.7. A subset of a topological space is closed if and only if it
contains all its limit points.

Proof. The set A is closed if and only if A = A by Lemma 17.A. By
Theorem 17.6, A = A ∪ A′, so A = A if and only if A′ ⊂ A.
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Theorem 17.8

Theorem 17.8

Theorem 17.8. Every finite point set in a Hausdorff space X is closed. In
particular, singletons form closed sets in a Hausdorff space.

Proof. Consider the set {x0}. If x ∈ X where x 6= x0 then, since X is a
Hausdorff space, there are disjoint neighborhoods U of x and V of x0.

Since U does not intersect {x0}, by Theorem 17.5(a), x is not in the
closure of set {x0}. Since x 6= x0 is an arbitrary element of X , the only
points of closure of {x0} is x0 itself and so by Corollary 17.7 {x0} is a
closed set. Now if we consider a finite point set, say {x0, x1, . . . , xn}, then
we simply write the set as {x0} ∪ {x1} ∪ · · · ∪ {xn}, observe that each {xi}
is closed, and apply Theorem 17.1 part (3).
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Theorem 17.9

Theorem 17.9

Theorem 17.9. Let X be a space satisfying the “T1 Axiom” (namely,
that all finite point sets are closed). Let A be a subset of X . Then x is a
limit point of A if and only if every neighborhood of x contains infinitely
many points of A.

Proof. Suppose every neighborhood of x intersects A in infinitely many
points. Then every neighborhood of x intersects set A at a point other
than x and so (by definition) x is a limit point of A.

Conversely, suppose that x is a limit point of A. ASSUME some
neighborhood U of x intersects A in only finitely many points. Then U
also intersects A \ {x} in finitely many points, say {x1, x2, . . . , xm}
= U ∩ (A \ {x}). The set X \ {x1, x2, . . . , xm} is open in X since by T1

Axiom {x1, x2, . . . , xm} is closed. Then U ∩ (X \ {x1, x2, . . . , xm}) is a
neighborhood of x that does not intersect the set A \ {x}. But this
CONTRADICTS the hypothesis that x is a limit point of x . So the
assumption that U intersects A in finitely many points is false. That is,
any neighborhood of x must intersect A in infinitely many points.
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Theorem 17.10

Theorem 17.10

Theorem 17.10. If X is a Hausdorff space, then a sequence of points of
X converges to at most one point of X .

Proof. Let xn be a sequence of points of X that converges to x . If y 6= x ,
let U and V be disjoint neighborhoods of x and y , respectively. Since U is
a neighborhood of x , then there is N1 ∈ N such that xn ∈ U for all
n ≥ N1.

So there is no N2 ∈ N such that for n ≥ N2 we have xn ∈ V
(since for n ≥ N1, xn ∈ U and U ∩ V = ∅). That is, xn does not converge
to y 6= x and xn converges to at most one point in X .
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