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Lemma 18.A

Lemma 18.A. Let f : X — Y, let B be a basis for the topology on Y/,
and let S be a subbasis for the topology on Y.

(1) f is continuous if f~1(B) is open in X for each B € B.
(2) f is continuous if f~1(S) is open in X for each X € S.
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Lemma 18.A

Lemma 18.A

Lemma 18.A. Let f : X — Y, let B be a basis for the topology on Y/,
and let S be a subbasis for the topology on Y.

(1) f is continuous if f~1(B) is open in X for each B € B.
(2) f is continuous if f~1(S) is open in X for each X € S.

Proof. (1) Let V C Y be open. Then (by definition of basis) there are
B, € B for a € J such that V = U,¢,B,.
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Lemma 18.A

Lemma 18.A. Let f : X — Y, let B be a basis for the topology on Y/,
and let S be a subbasis for the topology on Y.
(1) f is continuous if f~1(B) is open in X for each B € B.
(2) f is continuous if f~1(S) is open in X for each X € S.

Proof. (1) Let V C Y be open. Then (by definition of basis) there are
B, € B for a € J such that V = U,c B,. Then

fY(V) = f Y (UnesBa) = Uaecsf H(Ba) is an open set in X by
hypothesis. So each f~1(B,) is open in X and f~(V) is open in X.
Hence f is continuous.
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Lemma 18.A (continued)

Lemma 18.A. Let f : X — Y/, let B be a basis for the topology on Y,
and let S be a subbasis for the topology on Y.

(1) f is continuous if f~1(B) is open in X for each B € B.
(2) f is continuous if f~1(S) is open in X for each X € S.
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Lemma 18.A

Lemma 18.A (continued)

Lemma 18.A. Let f : X — Y/, let B be a basis for the topology on Y,
and let S be a subbasis for the topology on Y.

(1) f is continuous if f~1(B) is open in X for each B € B.
(2) f is continuous if f~1(S) is open in X for each X € S.

Proof (continued). (2) Let V C Y be open. Then (by the definition of
subbasis) there are S/, for a € J, i € N such that
V =Uues(SENS2N--.NSMe).
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Lemma 18.A (continued)

Lemma 18.A. Let f : X — Y/, let B be a basis for the topology on Y,
and let S be a subbasis for the topology on Y.

(1) f is continuous if f~1(B) is open in X for each B € B.
(2) f is continuous if f~1(S) is open in X for each X € S.

Proof (continued). (2) Let V C Y be open. Then (by the definition of
subbasis) there are S/, for a € J, i € N such that
V =Uaes(SENS2N---NS). Then

FHV) = FH(Uaes(SaNSAN- -+ NSI)) = UaesfH(SaNSZN---NS3)

= Uaes(FH(S) NFH(SE) N+ N FH(SA))

is open in X since each f~1(S!) is open in X by hypothesis and so
FHSHNF(S2)N---NF1(S=) is open for each a € J, and hence the
union is open. So f~(V) is open and f is continuous. O
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Theorem 18.1

Theorem 18.1. Let X and Y be topological spaces. let f : X — Y. Then
the following are equivalent:

(1) f is continuous.
(2) For every subset Z of X, one has f(A) C f(A).

(3) For every closed subset B of Y, the set f~1(B) is closed in
X.

(4) For each x € X and each neighborhood V of f(x), there is a
neighborhood U of x such that f(U) C V.

Proof. (1)=(2)
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Theorem 18.1

Theorem 18.1. Let X and Y be topological spaces. let f : X — Y. Then
the following are equivalent:

(1) f is continuous.
(2) For every subset Z of X, one has f(A) C f(A).

(3) For every closed subset B of Y, the set f~1(B) is closed in
X.

(4) For each x € X and each neighborhood V of f(x), there is a
neighborhood U of x such that f(U) C V.

Proof. (1)=(2) Suppose f is continuous. Let AC X and x €A. If x € A
then f(x) € f(A) C f(A).
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Theorem 18.1

Theorem 18.1. Let X and Y be topological spaces. let f : X — Y. Then
the following are equivalent:
(1) f is continuous.
(2) For every subset Z of X, one has f(A) C f(A).
(3) For every closed subset B of Y, the set f~1(B) is closed in
X.
(4) For each x € X and each neighborhood V of f(x), there is a
neighborhood U of x such that f(U) C V.

Proof. (1)=(2) Suppose f is continuous. Let AC X and x €A. If x € A
then f(x ) € f(A) C f(A). If x ¢ A then let V be a neighborhood of f(x).
Then f~1(V) is open in X and x € f~1(V). By definition of A, f=1(V)

intersects A at some point y # x.
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Introduction to Topology June 11, 2016



Theorem 18.1

Theorem 18.1. Let X and Y be topological spaces. let f : X — Y. Then
the following are equivalent:

(1) f is continuous.

(2) For every subset Z of X, one has f(A) C f(A).

(3) For every closed subset B of Y, the set f~1(B) is closed in
X.

(4) For each x € X and each neighborhood V of f(x), there is a
neighborhood U of x such that f(U) C V.

Proof. (1)=(2) Suppose f is continuous. Let AC X and x €A. If x € A
then f(x ) € f(A) C f(A). If x ¢ A then let V be a neighborhood of f(x).
Then f~1(V) is open in X and x € f~1(V). By definition of A, f=1(V)
intersects A at some point y # x. So f(y) € V N f(A) (notice that

f(y) # f(x) since f(x) & f(A)). So f(x) € f(A). So f(x) € f(A) for any
x € A and hence f(A) C f(A).
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Theorem 18.1 (continued 1)

Theorem 18.1. Let X and Y be topological spaces. let f : X — Y. Then
the following are equivalent:

(1) f is continuous.
(2) For every subset Z of X, one has f(A) C f(A).

(3) For every closed subset B of Y, the set f~1(B) is closed in
X.

(4) For each x € X and each neighborhood V of f(x), there is a
neighborhood U of x such that f(U) C V.

Proof (continued). (2)=(3)
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Theorem 18.1 (continued 1)

Theorem 18.1. Let X and Y be topological spaces. let f : X — Y. Then
the following are equivalent:

(1) f is continuous.

(2) For every subset Z of X, one has f(A) C f(A).

(3) For every closed subset B of Y, the set f~1(B) is closed in
X.

(4) For each x € X and each neighborhood V of f(x), there is a
neighborhood U of x such that f(U) C V.

Proof (continued). (2)=(3) Let B be closed in Y and let A= f~1(B).
Then f(A) C B (f may not be onto B and so we may not have

f(A) = B). So if x € A then f(x) € f(A) C f(A) by hypothesis (2) and

f(A) C B = B since f(A) C B and B is closed.
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Theorem 18.1 (continued 1)

Theorem 18.1. Let X and Y be topological spaces. let f : X — Y. Then
the following are equivalent:

(1) f is continuous.
(2) For every subset Z of X, one has f(A) C f(A).

(3) For every closed subset B of Y, the set f~1(B) is closed in
X.

(4) For each x € X and each neighborhood V of f(x), there is a
neighborhood U of x such that f(U) C V.

Proof (continued). (2)=(3) Let B be closed in Y and let A= f~1(B).
Then f(A) C B (f may not be onto B and so we may not have

f(A) = B). So if x € A then f(x) € f(A) C f(A) by hypothesis (2) and
f(A) C B = B since f(A) C B and B is closed. Hence f(x) € B and
x € f71(B)=A. So AC A and (since A C A) we have A = A so that

A= f1(B) is closed (by Lemma 17.A), as claimed.
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Theorem 18.1 (continued 2)

Theorem 18.1. Let X and Y be topological spaces. let f : X — Y. Then
the following are equivalent:

(1) f is continuous.

(3) For every closed subset B of Y, the set f~1(B) is closed in
X.

Proof (continued). (3)=(1)
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Theorem 18.1 (continued 2)

Theorem 18.1. Let X and Y be topological spaces. let f : X — Y. Then
the following are equivalent:

(1) f is continuous.

(3) For every closed subset B of Y, the set f~1(B) is closed in
X.

Proof (continued). (3)=(1) Let V be an open setin Y. Set B= Y\ V.
Then

fY(B) = fHY\V)=Ff"1\fYV) by Exercise 2.2(d)
X\ f~Y(V) since X is the domain of f.
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Theorem 18.1 (continued 2)

Theorem 18.1. Let X and Y be topological spaces. let f : X — Y. Then
the following are equivalent:

(1) f is continuous.

(3) For every closed subset B of Y, the set f~1(B) is closed in
X.

Proof (continued). (3)=(1) Let V be an open setin Y. Set B= Y\ V.
Then
fY(B) = fHY\V)=Ff"1\fYV) by Exercise 2.2(d)
X\ f~Y(V) since X is the domain of f.
Since V is open, B is closed in Y and so by hypothesis (3),

f~1(B) = X\ f~}(V) is closed in X and so f~1(V) is open. Therefore, by
the definition of continuous function, f is continuous.
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Theorem 18.1 (continued 3)

Theorem 18.1. Let X and Y be topological spaces. let f : X — Y. Then
the following are equivalent:

(1) f is continuous.

(4) For each x € X and each neighborhood V of f(x), there is a
neighborhood U of x such that f(U) C V.

Proof (continued). (1)=(4)
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Theorem 18.1 (continued 3)

Theorem 18.1. Let X and Y be topological spaces. let f : X — Y. Then
the following are equivalent:

(1) f is continuous.

(4) For each x € X and each neighborhood V of f(x), there is a
neighborhood U of x such that f(U) C V.

Proof (continued). (1)=(4) Let x € X and let V be a neighborhood of
f(x). Then U = f~1(V) is open since f is continuous and x € U. That is,
f(U) C V, as claimed.
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Theorem 18.1 (continued 3)

Theorem 18.1. Let X and Y be topological spaces. let f : X — Y. Then
the following are equivalent:
(1) f is continuous.

(4) For each x € X and each neighborhood V of f(x), there is a
neighborhood U of x such that f(U) C V.

Proof (continued). (1)=(4) Let x € X and let V be a neighborhood of
f(x). Then U = f~1(V) is open since f is continuous and x € U. That is,
f(U) C V, as claimed.

(4)=(1) Let V be an open set of Y. Let x € f~}(V). Then f(x) € V and
so by hypothesis (4) there is open Uy in X with x € Uy and f(Uyx) C V.
Then U, C f71(V).
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Theorem 18.1 (continued 3)

Theorem 18.1. Let X and Y be topological spaces. let f : X — Y. Then
the following are equivalent:

(1) f is continuous.

(4) For each x € X and each neighborhood V of f(x), there is a
neighborhood U of x such that f(U) C V.

Proof (continued). (1)=(4) Let x € X and let V be a neighborhood of
f(x). Then U = f~1(V) is open since f is continuous and x € U. That is,
f(U) C V, as claimed.

(4)=(1) Let V be an open set of Y. Let x € f~}(V). Then f(x) € V and
so by hypothesis (4) there is open Uy in X with x € Uy and f(Uyx) C V.

Then U, C f~1(V). Then with such open U, chosen for each x € f~(V)
we have f~1(V) = U,er—1(v)Ux and hence f~1(V) is open. Therefore, by
the definition of continuous function, f is continuous and (1) follows. [
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Theorem 18.2(a,b,c)
Theorem 18.2(a,b,¢)

Theorem 18.2. Rules for Constructing Continuous Functions.
Let X, Y, and Z be topological spaces.
(a) (Constant Function) If f : X — Y maps all of X into a
single point yp € Y, then f is continuous.
(b) (Inclusion) if A is a subspace of X, the inclusion function
j: A— X is continuous.
(c) (Composites) If f: X — Y and g : Y — Z are continuous,
then the map go f : X — Z is continuous.
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Theorem 18.2(a,b,c)

Theorem 18.2(a,b,¢)

Theorem 18.2. Rules for Constructing Continuous Functions.
Let X, Y, and Z be topological spaces.
(a) (Constant Function) If f : X — Y maps all of X into a
single point yp € Y, then f is continuous.
(b) (Inclusion) if A is a subspace of X, the inclusion function
j: A— X is continuous.
(c) (Composites) If f: X — Y and g : Y — Z are continuous,
then the map go f : X — Z is continuous.
Proof. (a) Let f(x) = yp for every x € X. Let V be open in Y. Then
f~Y(V)=Xifyye Vand f1(V)=aif yo & V. In either case, (V)
is open and so f is continuous.
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Theorem 18.2(a,b,c)
Theorem 18.2(a,b,¢)

Theorem 18.2. Rules for Constructing Continuous Functions.
Let X, Y, and Z be topological spaces.
(a) (Constant Function) If f : X — Y maps all of X into a
single point yp € Y, then f is continuous.
(b) (Inclusion) if A is a subspace of X, the inclusion function
j: A— X is continuous.
(c) (Composites) If f: X — Y and g : Y — Z are continuous,
then the map go f : X — Z is continuous.
Proof. (a) Let f(x) = yp for every x € X. Let V be open in Y. Then
f~Y(V)=Xifyye Vand f1(V)=aif yo & V. In either case, (V)
is open and so f is continuous. (b) If U is open in X, then
j7Y(U) = Un A which is open in A (by definition of the subspace
topology).
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Theorem 18.2(a,b,c)
Theorem 18.2(a,b,¢)

Theorem 18.2. Rules for Constructing Continuous Functions.
Let X, Y, and Z be topological spaces.
(a) (Constant Function) If f : X — Y maps all of X into a
single point yp € Y, then f is continuous.
(b) (Inclusion) if A is a subspace of X, the inclusion function
j: A— X is continuous.
(c) (Composites) If f: X — Y and g : Y — Z are continuous,
then the map go f : X — Z is continuous.
Proof. (a) Let f(x) = yp for every x € X. Let V be open in Y. Then
f~Y(V)=Xifyye Vand f1(V)=aif yo & V. In either case, (V)
is open and so f is continuous. (b) If U is open in X, then
j7Y(U) = Un A which is open in A (by definition of the subspace
topology). (c) If U is open in Z then g~1(U) is open in Y since g is
continuous and f~*(g~1(U)) is open in X since f is continuous. Now
(gof) Y (U)=FfLlog Y (U)=Ff1(g 1(U)) andso gofis
continuous. O
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Theorem 18.2

Theorem 18.2. Rules for Constructing Continuous Functions.
Let X, Y, and Z be topological spaces.

(d)

()

(Restricting the Domain) If f : X — Y is continuous and if
A is a subspace of X, then the restricted function
fla:A— Y is continuous.

(Restricting or Expanding the Range) let f : X — Y be
continuous. If X is a subspace of Y containing the image set
f(X), then the function g : X — Z obtained by restricting
the range of f is continuous. If Z is a space having Y as a
subspace, then the functions h: X — Z obtained by
expanding the range of f is continuous.

(Local Formulation of Continuity) The map f : X — Y is
continuous if X can be written as the union of open sets U,
such that f|y, is continuous for each a.
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Theorem 18.2(d, e, f) (continued 1)

Proof. (d) The function f|4 equals the composition of the inclusion map
J : A— Y (which is continuous by part (b)) and f : X — Y (which is
continuous by hypothesis). So by part (c), f|a is continuous.
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Theorem 18.2(d,e,f)

Theorem 18.2(d, e, f) (continued 1)

Proof. (d) The function f|4 equals the composition of the inclusion map
J : A— Y (which is continuous by part (b)) and f : X — Y (which is
continuous by hypothesis). So by part (c), f|a is continuous.

(e) Let f : X — Y be continuous and f(X) C Z C Y. Let B be open in
Z. Then (by definition) B = Z N U for some open U in Y.
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Theorem 18.2(d, e, f) (continued 1)

Proof. (d) The function f|4 equals the composition of the inclusion map
J : A— Y (which is continuous by part (b)) and f : X — Y (which is
continuous by hypothesis). So by part (c), f|a is continuous.
(e) Let f : X — Y be continuous and f(X) C Z C Y. Let B be open in
Z. Then (by definition) B = Z N U for some open U in Y. Then
g '(B) = g (ZnU)=¢g(Z)ng (V)

= Xng YU)since f(X)=g(X)C Z

= g (V)

= f1(U) since f(x) € Y for some x € X implies g(x) = f(x) €
Since f is continuous, f ~1(U) is open in X and so g~1(U) is open in X.
Therefore, g is continuous.
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Theorem 18.2(d, e, f) (continued 1)

Proof. (d) The function f|4 equals the composition of the inclusion map
J : A— Y (which is continuous by part (b)) and f : X — Y (which is
continuous by hypothesis). So by part (c), f|a is continuous.

(e) Let f : X — Y be continuous and f(X) C Z C Y. Let B be open in
Z. Then (by definition) B = Z N U for some open U in Y. Then

g '(B) = g (ZnU)=¢g(Z)ng (V)

= Xng YU)since f(X)=g(X)C Z

= g '(U)

= f1(U) since f(x) € Y for some x € X implies g(x) = f(x) €
Since f is continuous, f ~1(U) is open in X and so g~1(U) is open in X.
Therefore, g is continuous.
Now let h: X — Z D Y be as described. Then h is the composition of
f : X x Y (which is continuous by hypothesis) and the inclusion map
J 'Y — Z (which is continuous by part (b)). So, by part (c), h is

continuous.
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Theorem 18.2(d, e, f) (continued 2)

Proof. (f) Suppose X = U,e U, for open U, in X where f|y, is
continuous for each o € J. Let V be an open set in Y.
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Theorem 18.2(d, e, f) (continued 2)

Proof. (f) Suppose X = U,e U, for open U, in X where f|y, is
continuous for each o € J. Let V be an open set in Y. Since

f~1(V) N U, consists of x € X N U, = U, such that f(x) € V and
(flu,) Y (V) consists of x € U, such that f(x) € U,, then

f~Y (V)N Uy = (flu,) (V) for all @ € J. Since f|y, is continuous by
hypothesis, then this set is open in U, and since U, is open then (by
Lemma 16.2) this set is open in X.
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Theorem 18.2(d, e, f) (continued 2)

Proof. (f) Suppose X = U,e U, for open U, in X where f|y, is
continuous for each o € J. Let V be an open set in Y. Since

f~1(V) N U, consists of x € X N U, = U, such that f(x) € V and
(flu,) Y (V) consists of x € U, such that f(x) € U,, then

f~Y (V)N Uy = (flu,) (V) for all @ € J. Since f|y, is continuous by
hypothesis, then this set is open in U, and since U, is open then (by
Lemma 16.2) this set is open in X. Since X = Uye U, then

f_l(v) = f_l(\/) nX= f_l(v) N (UaeJUa) = UaEJ(f_l(V) N Ua)

is open in X since each set in the union is open. Therefore (by definition)
f is continuous. [
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Theorem 18.3

Theorem 18.3. The Pasting Lemma for Closed Sets.

Let X = AU B where A and B are closed in X. Let f : A— Y and

g : B — Y be continuous. If f(x) = g(x) for all x € AU B, then f and g
combine (or "paste”) to give a continuous function h: X — Y defined by
setting h(x) = f(x) if x € A and h(x) = g(x) if x € B.
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Theorem 18.3

Theorem 18.3

Theorem 18.3. The Pasting Lemma for Closed Sets.

Let X = AU B where A and B are closed in X. Let f : A— Y and

g : B — Y be continuous. If f(x) = g(x) for all x € AU B, then f and g
combine (or "paste”) to give a continuous function h: X — Y defined by
setting h(x) = f(x) if x € A and h(x) = g(x) if x € B.

Proof. Let C be closed in Y. Then h™}(C) = f~}(C) U g~1(C).
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Theorem 18.3

Theorem 18.3. The Pasting Lemma for Closed Sets.

Let X = AU B where A and B are closed in X. Let f : A— Y and

g : B — Y be continuous. If f(x) = g(x) for all x € AU B, then f and g
combine (or "paste”) to give a continuous function h: X — Y defined by
setting h(x) = f(x) if x € A and h(x) = g(x) if x € B.

Proof. Let C be closed in Y. Then h=}(C) = f~}(C) U g 1(C). Since f
is continuous by hypothesis then f~1(C) is closed in A, by Theorem 18.1
(the (1)=(3) part), and so f~1(C) is closed in X since A is closed (that
is, f1(C) = AN D for closed D in X, so f~1(C) is closed in X).
Similarly, g71(C) is closed in B and in X.
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Theorem 18.3

Theorem 18.3. The Pasting Lemma for Closed Sets.

Let X = AU B where A and B are closed in X. Let f : A— Y and

g : B — Y be continuous. If f(x) = g(x) for all x € AU B, then f and g
combine (or "paste”) to give a continuous function h: X — Y defined by
setting h(x) = f(x) if x € A and h(x) = g(x) if x € B.

Proof. Let C be closed in Y. Then h=}(C) = f~}(C) U g 1(C). Since f
is continuous by hypothesis then f~1(C) is closed in A, by Theorem 18.1
(the (1)=(3) part), and so f~1(C) is closed in X since A is closed (that
is, f1(C) = AN D for closed D in X, so f~1(C) is closed in X).
Similarly, g71(C) is closed in B and in X. Therefore h~1(C) is closed in
X and so by Theorem 18.2 (the (3)=-(1) part) h is continuous. O

Introduction to Topology June 11, 2016 13 / 15



Theorem 18.4

Theorem 18.4

Theorem 18.4. Maps into Products.

Let f : A— X x Y be given by the equation f(a) = (f(a), f2(a)) where
fi:A— Xand f: Y — B. Then f is continuous if and only if the
functions f; and £ are continuous.
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Theorem 18.4

Theorem 18.4. Maps into Products.

Let f : A— X x Y be given by the equation f(a) = (f(a), f2(a)) where
fi:A— Xand f: Y — B. Then f is continuous if and only if the
functions f; and £ are continuous.

Proof. Let m1; : X x Y = X and m : X x Y — Y. Then for U open in X
and V open in Y, we have 77 (U) = U x T and 7, }(V) = X x V open

in X x Y (by the definition of product topology; these are basis elements

for the product topology on X x Y). So w1 and 7, are continuous.
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Theorem 18.4

Theorem 18.4. Maps into Products.

Let f : A— X x Y be given by the equation f(a) = (f(a), f2(a)) where
fi:A— Xand f: Y — B. Then f is continuous if and only if the
functions f; and £ are continuous.

Proof. Let m1; : X x Y = X and m : X x Y — Y. Then for U open in X
and V open in Y, we have 77 (U) = U x T and 7, }(V) = X x V open

in X x Y (by the definition of product topology; these are basis elements

for the product topology on X x Y). So m; and 7, are continuous. Note

that for each a € A, m1(f(a)) = m1((fi(a), f2(a)) = fi(a) and

mo(f(a)) = ma((f(a), 2(a)) = f2(a). So L =mof and fh =m0 f.
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Theorem 18.4

Theorem 18.4. Maps into Products.

Let f : A— X x Y be given by the equation f(a) = (f(a), f2(a)) where
fi:A— Xand f: Y — B. Then f is continuous if and only if the
functions f; and £ are continuous.

Proof. Let m1; : X x Y = X and m : X x Y — Y. Then for U open in X
and V open in Y, we have 77 (U) = U x T and 7, }(V) = X x V open
in X x Y (by the definition of product topology; these are basis elements
for the product topology on X x Y). So m; and 7, are continuous. Note
that for each a € A, m1(f(a)) = m1((fi(a), f2(a)) = fi(a) and

mo(f(a)) = ma((f(a), 2(a)) = f2(a). So L =mof and fh =m0 f.
Suppose f is continuous. Then, by Theorem 18.2 part (c), f; and f, are
continuous.
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Theorem 18.4

Theorem 18.4 (continued)

Theorem 18.4. Maps into Products.

Let f : A— X x Y be given by the equation f(a) = (f1(a), f2(a)) where
fi:A— Xand f»: Y — B. Then f is continuous if and only if the
functions f; and f> are continuous.

Introduction to Topology June 11, 2016 15 / 15



Theorem 18.4 (continued)

Theorem 18.4. Maps into Products.

Let f : A— X x Y be given by the equation f(a) = (f1(a), f2(a)) where
fi:A— Xand f»: Y — B. Then f is continuous if and only if the
functions f; and f> are continuous.

Proof (continued). Suppose fi and f; are continuous. Let U x V be a

basis element for the product topology of X x Y (so U is open in X and
V is open in Y).
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Theorem 18.4 (continued)

Theorem 18.4. Maps into Products.

Let f : A— X x Y be given by the equation f(a) = (f1(a), f2(a)) where
fi:A— Xand f»: Y — B. Then f is continuous if and only if the
functions f; and f> are continuous.

Proof (continued). Suppose fi and f; are continuous. Let U x V be a
basis element for the product topology of X x Y (so U is open in X and
V is openin Y). Now a € f (U x V) if and only if f(a) € U x V, or if
and only if f1(a) € U and f(a) € V, or if and only if

ac Y U)NE (V). Thatis, YU x V) = A(U) N £, 1(V). Since f
an df, are continuous then £, *(U) and £, (V) are open in X and so
f~1(U x V) is open in X.
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Theorem 18.4 (continued)

Theorem 18.4. Maps into Products.

Let f : A— X x Y be given by the equation f(a) = (f1(a), f2(a)) where
fi:A— Xand f»: Y — B. Then f is continuous if and only if the
functions f; and f> are continuous.

Proof (continued). Suppose fi and f; are continuous. Let U x V be a
basis element for the product topology of X x Y (so U is open in X and
V is openin Y). Now a € f (U x V) if and only if f(a) € U x V, or if
and only if f1(a) € U and f(a) € V, or if and only if
ac Y U)NE (V). Thatis, YU x V) = A(U) N £, 1(V). Since f
an df, are continuous then £, *(U) and £, (V) are open in X and so
f~1(U x V) is open in X. Since every open set in X x Y can be written
as a union of basis elements by Lemma 13.1, say Uu,ejU, X V,, and
f N (UaegUs X Vg = Ugesf "YUy x Vo), then the inverse image of any
open set in X X Y is open in A. That is, f is continuous.

[
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