Introduction to Topology

Chapter 2. Topological Spaces and Continuous Functions Section 18. Continuous Functions—Proofs of Theorems

Table of contents

- 1 Lemma 18.A
- 2 Theorem 18.1
- 3 Theorem 18.2(a,b,c)
- 4 Theorem 18.2(d,e,f)
- 5 Theorem 18.3
- 6 Theorem 18.4

Lemma 18.A

Lemma 18.A. Let $f : X \to Y$, let \mathcal{B} be a basis for the topology on Y, and let \mathcal{S} be a subbasis for the topology on Y.

- (1) f is continuous if $f^{-1}(B)$ is open in X for each $B \in \mathcal{B}$.
- (2) f is continuous if $f^{-1}(S)$ is open in X for each $X \in S$.

Proof. (1) Let $V \subset Y$ be open. Then (by definition of basis) there are $B_{\alpha} \in \mathcal{B}$ for $\alpha \in J$ such that $V = \bigcup_{\alpha \in J} B_{\alpha}$.

Lemma 18.A

Lemma 18.A. Let $f : X \to Y$, let \mathcal{B} be a basis for the topology on Y, and let \mathcal{S} be a subbasis for the topology on Y.

(1) f is continuous if $f^{-1}(B)$ is open in X for each $B \in \mathcal{B}$.

(2) f is continuous if $f^{-1}(S)$ is open in X for each $X \in S$.

Proof. (1) Let $V \subset Y$ be open. Then (by definition of basis) there are $B_{\alpha} \in \mathcal{B}$ for $\alpha \in J$ such that $V = \bigcup_{\alpha \in J} B_{\alpha}$. Then $f^{-1}(V) = f^{-1}(\bigcup_{\alpha \in J} B_{\alpha}) = \bigcup_{\alpha \in J} f^{-1}(B_{\alpha})$ is an open set in X by hypothesis. So each $f^{-1}(B_{\alpha})$ is open in X and $f^{-1}(V)$ is open in X. Hence f is continuous.

Lemma 18.A

Lemma 18.A. Let $f : X \to Y$, let \mathcal{B} be a basis for the topology on Y, and let \mathcal{S} be a subbasis for the topology on Y.

(1) f is continuous if $f^{-1}(B)$ is open in X for each $B \in \mathcal{B}$.

(2) f is continuous if $f^{-1}(S)$ is open in X for each $X \in S$.

Proof. (1) Let $V \subset Y$ be open. Then (by definition of basis) there are $B_{\alpha} \in \mathcal{B}$ for $\alpha \in J$ such that $V = \bigcup_{\alpha \in J} B_{\alpha}$. Then $f^{-1}(V) = f^{-1}(\bigcup_{\alpha \in J} B_{\alpha}) = \bigcup_{\alpha \in J} f^{-1}(B_{\alpha})$ is an open set in X by hypothesis. So each $f^{-1}(B_{\alpha})$ is open in X and $f^{-1}(V)$ is open in X. Hence f is continuous.

Lemma 18.A (continued)

Lemma 18.A. Let $f : X \to Y$, let \mathcal{B} be a basis for the topology on Y, and let \mathcal{S} be a subbasis for the topology on Y.

(1) f is continuous if $f^{-1}(B)$ is open in X for each $B \in \mathcal{B}$.

(2) f is continuous if $f^{-1}(S)$ is open in X for each $X \in S$.

Proof (continued). (2) Let $V \subset Y$ be open. Then (by the definition of subbasis) there are S^i_{α} for $\alpha \in J$, $i \in \mathbb{N}$ such that $V = \bigcup_{\alpha \in J} (S^1_{\alpha} \cap S^2_{\alpha} \cap \cdots \cap S^{n_{\alpha}}_{\alpha}).$

Lemma 18.A (continued)

Lemma 18.A. Let $f : X \to Y$, let \mathcal{B} be a basis for the topology on Y, and let \mathcal{S} be a subbasis for the topology on Y.

(1) f is continuous if $f^{-1}(B)$ is open in X for each $B \in \mathcal{B}$.

(2) f is continuous if $f^{-1}(S)$ is open in X for each $X \in S$.

Proof (continued). (2) Let $V \subset Y$ be open. Then (by the definition of subbasis) there are S^i_{α} for $\alpha \in J$, $i \in \mathbb{N}$ such that $V = \bigcup_{\alpha \in J} (S^1_{\alpha} \cap S^2_{\alpha} \cap \cdots \cap S^{n_{\alpha}}_{\alpha})$. Then

 $f^{-1}(V) = f^{-1}(\bigcup_{\alpha \in J} (S^1_{\alpha} \cap S^2_{\alpha} \cap \dots \cap S^{n_{\alpha}}_{\alpha})) = \bigcup_{\alpha \in J} f^{-1}(S^1_{\alpha} \cap S^2_{\alpha} \cap \dots \cap S^{n_{\alpha}}_{\alpha})$

$$= \cup_{\alpha \in J} (f^{-1}(S^1_{\alpha}) \cap f^{-1}(S^2_{\alpha}) \cap \dots \cap f^{-1}(S^{n_{\alpha}}_{\alpha}))$$

is open in X since each $f^{-1}(S^i_{\alpha})$ is open in X by hypothesis and so $f^{-1}(S^1_{\alpha}) \cap f^{-1}(S^2_{\alpha}) \cap \cdots \cap f^{-1}(S^{n_{\alpha}}_{\alpha})$ is open for each $\alpha \in J$, and hence the union is open. So $f^{-1}(V)$ is open and f is continuous.

Lemma 18.A (continued)

Lemma 18.A. Let $f : X \to Y$, let \mathcal{B} be a basis for the topology on Y, and let \mathcal{S} be a subbasis for the topology on Y.

(1) f is continuous if $f^{-1}(B)$ is open in X for each $B \in \mathcal{B}$.

(2) f is continuous if $f^{-1}(S)$ is open in X for each $X \in S$.

Proof (continued). (2) Let $V \subset Y$ be open. Then (by the definition of subbasis) there are S^i_{α} for $\alpha \in J$, $i \in \mathbb{N}$ such that $V = \bigcup_{\alpha \in J} (S^1_{\alpha} \cap S^2_{\alpha} \cap \cdots \cap S^{n_{\alpha}}_{\alpha})$. Then

$$egin{aligned} f^{-1}(V) &= f^{-1}(\cup_{lpha\in J}(S^1_lpha\cap S^2_lpha\cap\cdots\cap S^{n_lpha}_lpha)) = \cup_{lpha\in J}f^{-1}(S^1_lpha\cap S^2_lpha\cap\cdots\cap S^{n_lpha}_lpha)) \ &= \cup_{lpha\in J}(f^{-1}(S^1_lpha)\cap f^{-1}(S^2_lpha)\cap\cdots\cap f^{-1}(S^{n_lpha}_lpha)) \end{aligned}$$

is open in X since each $f^{-1}(S^i_{\alpha})$ is open in X by hypothesis and so $f^{-1}(S^1_{\alpha}) \cap f^{-1}(S^2_{\alpha}) \cap \cdots \cap f^{-1}(S^{n_{\alpha}}_{\alpha})$ is open for each $\alpha \in J$, and hence the union is open. So $f^{-1}(V)$ is open and f is continuous.

Theorem 18.1. Let X and Y be topological spaces. let $f : X \to Y$. Then the following are equivalent:

- (1) f is continuous.
- (2) For every subset Z of X, one has $f(\overline{A}) \subset \overline{f(A)}$.
- (3) For every closed subset B of Y, the set $f^{-1}(B)$ is closed in X.
- (4) For each $x \in X$ and each neighborhood V of f(x), there is a neighborhood U of x such that $f(U) \subset V$.

Proof. (1) \Rightarrow (2) Suppose f is continuous. Let $A \subset X$ and $x \in \overline{A}$. If $x \in A$ then $f(x) \in f(A) \subset \overline{f(A)}$.

Theorem 18.1. Let X and Y be topological spaces. let $f : X \to Y$. Then the following are equivalent:

- (1) f is continuous.
- (2) For every subset Z of X, one has $f(\overline{A}) \subset \overline{f(A)}$.
- (3) For every closed subset B of Y, the set $f^{-1}(B)$ is closed in X.
- (4) For each $x \in X$ and each neighborhood V of f(x), there is a neighborhood U of x such that $f(U) \subset V$.

Proof. (1) \Rightarrow (2) Suppose f is continuous. Let $A \subset X$ and $x \in \overline{A}$. If $x \in A$ then $f(x) \in f(A) \subset \overline{f(A)}$. If $x \notin A$ then let V be a neighborhood of f(x). Then $f^{-1}(V)$ is open in X and $x \in f^{-1}(V)$. By definition of \overline{A} , $f^{-1}(V)$ intersects A at some point $y \neq x$.

Theorem 18.1. Let X and Y be topological spaces. let $f : X \to Y$. Then the following are equivalent:

- (1) f is continuous.
- (2) For every subset Z of X, one has $f(\overline{A}) \subset \overline{f(A)}$.
- (3) For every closed subset B of Y, the set $f^{-1}(B)$ is closed in X.
- (4) For each $x \in X$ and each neighborhood V of f(x), there is a neighborhood U of x such that $f(U) \subset V$.

Proof. (1)⇒(2) Suppose f is continuous. Let $A \subset X$ and $x \in \overline{A}$. If $x \in A$ then $f(x) \in f(A) \subset \overline{f(A)}$. If $x \notin A$ then let V be a neighborhood of f(x). Then $f^{-1}(V)$ is open in X and $x \in f^{-1}(V)$. By definition of \overline{A} , $f^{-1}(V)$ intersects A at some point $y \neq x$. So $f(y) \in V \cap f(A)$ (notice that $f(y) \neq f(x)$ since $f(x) \notin \overline{f(A)}$). So $f(x) \in \overline{f(A)}$. So $f(x) \in \overline{f(A)}$ for any $x \in \overline{A}$ and hence $f(\overline{A}) \subset \overline{f(A)}$.

Theorem 18.1. Let X and Y be topological spaces. let $f : X \to Y$. Then the following are equivalent:

- (1) f is continuous.
- (2) For every subset Z of X, one has $f(\overline{A}) \subset \overline{f(A)}$.
- (3) For every closed subset B of Y, the set $f^{-1}(B)$ is closed in X.
- (4) For each $x \in X$ and each neighborhood V of f(x), there is a neighborhood U of x such that $f(U) \subset V$.

Proof. (1)⇒(2) Suppose f is continuous. Let $A \subset X$ and $x \in \overline{A}$. If $x \in A$ then $f(x) \in f(A) \subset \overline{f(A)}$. If $x \notin A$ then let V be a neighborhood of f(x). Then $f^{-1}(V)$ is open in X and $x \in f^{-1}(V)$. By definition of \overline{A} , $f^{-1}(V)$ intersects A at some point $y \neq x$. So $f(y) \in V \cap f(A)$ (notice that $f(y) \neq f(x)$ since $f(x) \notin f(A)$). So $f(x) \in \overline{f(A)}$. So $f(x) \in \overline{f(A)}$ for any $x \in \overline{A}$ and hence $f(\overline{A}) \subset \overline{f(A)}$.

Theorem 18.1. Let X and Y be topological spaces. let $f : X \to Y$. Then the following are equivalent:

- (1) f is continuous.
- (2) For every subset Z of X, one has $f(\overline{A}) \subset \overline{f(A)}$.
- (3) For every closed subset B of Y, the set $f^{-1}(B)$ is closed in X.
- (4) For each $x \in X$ and each neighborhood V of f(x), there is a neighborhood U of x such that $f(U) \subset V$.

Proof (continued). (2) \Rightarrow (3) Let *B* be closed in *Y* and let $A = f^{-1}(B)$. Then $f(A) \subset B$ (*f* may not be onto *B* and so we may not have f(A) = B). So if $x \in \overline{A}$ then $f(x) \in f(\overline{A}) \subset \overline{f(A)}$ by hypothesis (2) and $\overline{f(A)} \subset \overline{B} = B$ since $f(A) \subset B$ and *B* is closed.

Theorem 18.1. Let X and Y be topological spaces. let $f : X \to Y$. Then the following are equivalent:

- (1) f is continuous.
- (2) For every subset Z of X, one has $f(\overline{A}) \subset \overline{f(A)}$.
- (3) For every closed subset B of Y, the set $f^{-1}(B)$ is closed in X.
- (4) For each $x \in X$ and each neighborhood V of f(x), there is a neighborhood U of x such that $f(U) \subset V$.

Proof (continued). (2) \Rightarrow (3) Let *B* be closed in *Y* and let $A = f^{-1}(B)$. Then $f(A) \subset B$ (*f* may not be onto *B* and so we may not have f(A) = B). So if $x \in \overline{A}$ then $f(x) \in f(\overline{A}) \subset \overline{f(A)}$ by hypothesis (2) and $\overline{f(A)} \subset \overline{B} = B$ since $f(A) \subset B$ and *B* is closed. Hence $f(x) \in B$ and $x \in f^{-1}(B) = A$. So $\overline{A} \subset A$ and (since $A \subset \overline{A}$) we have $A = \overline{A}$ so that $A = f^{-1}(B)$ is closed (by Lemma 17.A), as claimed.

Theorem 18.1. Let X and Y be topological spaces. let $f : X \to Y$. Then the following are equivalent:

- (1) f is continuous.
- (2) For every subset Z of X, one has $f(\overline{A}) \subset \overline{f(A)}$.
- (3) For every closed subset B of Y, the set $f^{-1}(B)$ is closed in X.
- (4) For each $x \in X$ and each neighborhood V of f(x), there is a neighborhood U of x such that $f(U) \subset V$.

Proof (continued). (2) \Rightarrow (3) Let *B* be closed in *Y* and let $A = f^{-1}(B)$. Then $f(A) \subset B$ (*f* may not be onto *B* and so we may not have f(A) = B). So if $x \in \overline{A}$ then $f(x) \in f(\overline{A}) \subset \overline{f(A)}$ by hypothesis (2) and $\overline{f(A)} \subset \overline{B} = B$ since $f(A) \subset B$ and *B* is closed. Hence $f(x) \in B$ and $x \in f^{-1}(B) = A$. So $\overline{A} \subset A$ and (since $A \subset \overline{A}$) we have $A = \overline{A}$ so that $A = f^{-1}(B)$ is closed (by Lemma 17.A), as claimed.

Theorem 18.1. Let X and Y be topological spaces. let $f : X \to Y$. Then the following are equivalent:

(1) f is continuous.

(3) For every closed subset B of Y, the set $f^{-1}(B)$ is closed in X.

Proof (continued). (3) \Rightarrow (1) Let V be an open set in Y. Set $B = Y \setminus V$. Then

$$f^{-1}(B) = f^{-1}(Y \setminus V) = f^{-1} \setminus f^{-1}(V) \text{ by Exercise 2.2(d)}$$
$$= X \setminus f^{-1}(V) \text{ since } X \text{ is the domain of } f.$$

Theorem 18.1. Let X and Y be topological spaces. let $f : X \to Y$. Then the following are equivalent:

(1) f is continuous.

(3) For every closed subset B of Y, the set $f^{-1}(B)$ is closed in X.

Proof (continued). (3) \Rightarrow (1) Let V be an open set in Y. Set $B = Y \setminus V$. Then

$$f^{-1}(B) = f^{-1}(Y \setminus V) = f^{-1} \setminus f^{-1}(V) \text{ by Exercise 2.2(d)}$$

= $X \setminus f^{-1}(V)$ since X is the domain of f.

Since V is open, B is closed in Y and so by hypothesis (3), $f^{-1}(B) = X \setminus f^{-1}(V)$ is closed in X and so $f^{-1}(V)$ is open. Therefore, by the definition of continuous function, f is continuous.

Theorem 18.1. Let X and Y be topological spaces. let $f : X \to Y$. Then the following are equivalent:

(1) f is continuous.

(3) For every closed subset B of Y, the set $f^{-1}(B)$ is closed in X.

Proof (continued). (3) \Rightarrow (1) Let V be an open set in Y. Set $B = Y \setminus V$. Then

$$\begin{array}{rcl} f^{-1}(B) &=& f^{-1}(Y \setminus V) = f^{-1} \setminus f^{-1}(V) \text{ by Exercise 2.2(d)} \\ &=& X \setminus f^{-1}(V) \text{ since } X \text{ is the domain of } f. \end{array}$$

Since V is open, B is closed in Y and so by hypothesis (3), $f^{-1}(B) = X \setminus f^{-1}(V)$ is closed in X and so $f^{-1}(V)$ is open. Therefore, by the definition of continuous function, f is continuous.

Theorem 18.1. Let X and Y be topological spaces. let $f : X \to Y$. Then the following are equivalent:

- (1) f is continuous.
- (4) For each $x \in X$ and each neighborhood V of f(x), there is a neighborhood U of x such that $f(U) \subset V$.

Proof (continued). (1) \Rightarrow (4) Let $x \in X$ and let V be a neighborhood of f(x). Then $U = f^{-1}(V)$ is open since f is continuous and $x \in U$. That is, $f(U) \subset V$, as claimed.

Theorem 18.1. Let X and Y be topological spaces. let $f : X \to Y$. Then the following are equivalent:

- (1) f is continuous.
- (4) For each $x \in X$ and each neighborhood V of f(x), there is a neighborhood U of x such that $f(U) \subset V$.

Proof (continued). (1) \Rightarrow (4) Let $x \in X$ and let V be a neighborhood of f(x). Then $U = f^{-1}(V)$ is open since f is continuous and $x \in U$. That is, $f(U) \subset V$, as claimed.

 $(4) \Rightarrow (1)$ Let V be an open set of Y. Let $x \in f^{-1}(V)$. Then $f(x) \in V$ and so by hypothesis (4) there is open U_x in X with $x \in U_x$ and $f(U_x) \subset V$. Then $U_x \subset f^{-1}(V)$.

Theorem 18.1. Let X and Y be topological spaces. let $f : X \to Y$. Then the following are equivalent:

- (1) f is continuous.
- (4) For each $x \in X$ and each neighborhood V of f(x), there is a neighborhood U of x such that $f(U) \subset V$.

Proof (continued). (1) \Rightarrow (4) Let $x \in X$ and let V be a neighborhood of f(x). Then $U = f^{-1}(V)$ is open since f is continuous and $x \in U$. That is, $f(U) \subset V$, as claimed.

 $(4)\Rightarrow(1)$ Let V be an open set of Y. Let $x \in f^{-1}(V)$. Then $f(x) \in V$ and so by hypothesis (4) there is open U_x in X with $x \in U_x$ and $f(U_x) \subset V$. Then $U_x \subset f^{-1}(V)$. Then with such open U_x chosen for each $x \in f^{-1}(V)$ we have $f^{-1}(V) = \bigcup_{x \in f^{-1}(V)} U_x$ and hence $f^{-1}(V)$ is open. Therefore, by the definition of continuous function, f is continuous and (1) follows. \Box

Theorem 18.1. Let X and Y be topological spaces. let $f : X \to Y$. Then the following are equivalent:

- (1) f is continuous.
- (4) For each $x \in X$ and each neighborhood V of f(x), there is a neighborhood U of x such that $f(U) \subset V$.

Proof (continued). (1) \Rightarrow (4) Let $x \in X$ and let V be a neighborhood of f(x). Then $U = f^{-1}(V)$ is open since f is continuous and $x \in U$. That is, $f(U) \subset V$, as claimed.

 $(4) \Rightarrow (1)$ Let V be an open set of Y. Let $x \in f^{-1}(V)$. Then $f(x) \in V$ and so by hypothesis (4) there is open U_x in X with $x \in U_x$ and $f(U_x) \subset V$. Then $U_x \subset f^{-1}(V)$. Then with such open U_x chosen for each $x \in f^{-1}(V)$ we have $f^{-1}(V) = \bigcup_{x \in f^{-1}(V)} U_x$ and hence $f^{-1}(V)$ is open. Therefore, by the definition of continuous function, f is continuous and (1) follows. \Box

Theorem 18.2. Rules for Constructing Continuous Functions.

Let X, Y, and Z be topological spaces.

- (a) (Constant Function) If $f : X \to Y$ maps all of X into a single point $y_0 \in Y$, then f is continuous.
- (b) (Inclusion) if A is a subspace of X, the inclusion function $j: A \rightarrow X$ is continuous.
- (c) (Composites) If $f : X \to Y$ and $g : Y \to Z$ are continuous, then the map $g \circ f : X \to Z$ is continuous.

Proof. (a) Let $f(x) = y_0$ for every $x \in X$. Let V be open in Y. Then $f^{-1}(V) = X$ if $y_0 \in V$ and $f^{-1}(V) = \emptyset$ if $y_0 \notin V$. In either case, $f^{-1}(V)$ is open and so f is continuous.

Theorem 18.2. Rules for Constructing Continuous Functions.

Let X, Y, and Z be topological spaces.

- (a) (Constant Function) If $f : X \to Y$ maps all of X into a single point $y_0 \in Y$, then f is continuous.
- (b) (Inclusion) if A is a subspace of X, the inclusion function $j: A \rightarrow X$ is continuous.
- (c) (Composites) If $f : X \to Y$ and $g : Y \to Z$ are continuous, then the map $g \circ f : X \to Z$ is continuous.

Proof. (a) Let $f(x) = y_0$ for every $x \in X$. Let V be open in Y. Then $f^{-1}(V) = X$ if $y_0 \in V$ and $f^{-1}(V) = \emptyset$ if $y_0 \notin V$. In either case, $f^{-1}(V)$ is open and so f is continuous. (b) If U is open in X, then $j^{-1}(U) = U \cap A$ which is open in A (by definition of the subspace topology).

Theorem 18.2. Rules for Constructing Continuous Functions.

Let X, Y, and Z be topological spaces.

- (a) (Constant Function) If $f : X \to Y$ maps all of X into a single point $y_0 \in Y$, then f is continuous.
- (b) (Inclusion) if A is a subspace of X, the inclusion function $j: A \rightarrow X$ is continuous.
- (c) (Composites) If $f : X \to Y$ and $g : Y \to Z$ are continuous, then the map $g \circ f : X \to Z$ is continuous.

Proof. (a) Let $f(x) = y_0$ for every $x \in X$. Let V be open in Y. Then $f^{-1}(V) = X$ if $y_0 \in V$ and $f^{-1}(V) = \emptyset$ if $y_0 \notin V$. In either case, $f^{-1}(V)$ is open and so f is continuous. (b) If U is open in X, then $j^{-1}(U) = U \cap A$ which is open in A (by definition of the subspace topology). (c) If U is open in Z then $g^{-1}(U)$ is open in Y since g is continuous and $f^{-1}(g^{-1}(U))$ is open in X since f is continuous. Now $(g \circ f)^{-1}(U) = f^{-1} \circ g^{-1}(U) = f^{-1}(g^{-1}(U))$ and so $g \circ f$ is continuous.

Theorem 18.2. Rules for Constructing Continuous Functions.

Let X, Y, and Z be topological spaces.

- (a) (Constant Function) If $f : X \to Y$ maps all of X into a single point $y_0 \in Y$, then f is continuous.
- (b) (Inclusion) if A is a subspace of X, the inclusion function $j: A \rightarrow X$ is continuous.
- (c) (Composites) If $f : X \to Y$ and $g : Y \to Z$ are continuous, then the map $g \circ f : X \to Z$ is continuous.

Proof. (a) Let $f(x) = y_0$ for every $x \in X$. Let V be open in Y. Then $f^{-1}(V) = X$ if $y_0 \in V$ and $f^{-1}(V) = \emptyset$ if $y_0 \notin V$. In either case, $f^{-1}(V)$ is open and so f is continuous. (b) If U is open in X, then $j^{-1}(U) = U \cap A$ which is open in A (by definition of the subspace topology). (c) If U is open in Z then $g^{-1}(U)$ is open in Y since g is continuous and $f^{-1}(g^{-1}(U))$ is open in X since f is continuous. Now $(g \circ f)^{-1}(U) = f^{-1} \circ g^{-1}(U) = f^{-1}(g^{-1}(U))$ and so $g \circ f$ is continuous.

Theorem 18.2. Rules for Constructing Continuous Functions. Let X, Y, and Z be topological spaces.

- (d) (Restricting the Domain) If f : X → Y is continuous and if A is a subspace of X, then the restricted function f|_A : A → Y is continuous.
- (e) (Restricting or Expanding the Range) let f : X → Y be continuous. If X is a subspace of Y containing the image set f(X), then the function g : X → Z obtained by restricting the range of f is continuous. If Z is a space having Y as a subspace, then the functions h : X → Z obtained by expanding the range of f is continuous.
- (e) (Local Formulation of Continuity) The map $f : X \to Y$ is continuous if X can be written as the union of open sets U_{α} such that $f|_{U_{\alpha}}$ is continuous for each α .

Proof. (d) The function $f|_A$ equals the composition of the inclusion map $j: A \to Y$ (which is continuous by part (b)) and $f: X \to Y$ (which is continuous by hypothesis). So by part (c), $f|_A$ is continuous. (e) Let $f: X \to Y$ be continuous and $f(X) \subset Z \subset Y$. Let B be open in

Z. Then (by definition) $B = Z \cap U$ for some open U in Y.

Proof. (d) The function $f|_A$ equals the composition of the inclusion map $j: A \to Y$ (which is continuous by part (b)) and $f: X \to Y$ (which is continuous by hypothesis). So by part (c), $f|_A$ is continuous. (e) Let $f: X \to Y$ be continuous and $f(X) \subset Z \subset Y$. Let *B* be open in *Z*. Then (by definition) $B = Z \cap U$ for some open *U* in *Y*. Then

$$g^{-1}(B) = g^{-1}(Z \cap U) = g^{-1}(Z) \cap g^{-1}(U)$$

= $X \cap g^{-1}(U)$ since $f(X) = g(X) \subset Z$
= $g^{-1}(U)$
= $f^{-1}(U)$ since $f(x) \in Y$ for some $x \in X$ implies $g(x) = f(x) \in X$

Since f is continuous, $f^{-1}(U)$ is open in X and so $g^{-1}(U)$ is open in X. Therefore, g is continuous.

Proof. (d) The function $f|_A$ equals the composition of the inclusion map $j: A \to Y$ (which is continuous by part (b)) and $f: X \to Y$ (which is continuous by hypothesis). So by part (c), $f|_A$ is continuous. (e) Let $f: X \to Y$ be continuous and $f(X) \subset Z \subset Y$. Let *B* be open in *Z*. Then (by definition) $B = Z \cap U$ for some open *U* in *Y*. Then $g^{-1}(B) = g^{-1}(Z \cap U) = g^{-1}(Z) \cap g^{-1}(U)$ $= X \cap g^{-1}(U)$ since $f(X) = g(X) \subset Z$ $= g^{-1}(U)$

 $f^{-1}(U)$ since $f(x) \in Y$ for some $x \in X$ implies $g(x) = f(x) \in Y$

Since f is continuous, $f^{-1}(U)$ is open in X and so $g^{-1}(U)$ is open in X. Therefore, g is continuous.

Now let $h: X \to Z \supset Y$ be as described. Then h is the composition of $f: X \times Y$ (which is continuous by hypothesis) and the inclusion map $j: Y \to Z$ (which is continuous by part (b)). So, by part (c), h is continuous.

Proof. (d) The function $f|_A$ equals the composition of the inclusion map $j: A \to Y$ (which is continuous by part (b)) and $f: X \to Y$ (which is continuous by hypothesis). So by part (c), $f|_A$ is continuous. (e) Let $f: X \to Y$ be continuous and $f(X) \subset Z \subset Y$. Let *B* be open in *Z*. Then (by definition) $B = Z \cap U$ for some open *U* in *Y*. Then $g^{-1}(B) = g^{-1}(Z \cap U) = g^{-1}(Z) \cap g^{-1}(U)$ $= X \cap g^{-1}(U)$ since $f(X) = g(X) \subset Z$ $= g^{-1}(U)$ $= f^{-1}(U)$ since $f(x) \in Y$ for some $x \in X$ implies $g(x) = f(x) \in Y$

Since f is continuous, $f^{-1}(U)$ is open in X and so $g^{-1}(U)$ is open in X.

Therefore, g is continuous.

Now let $h: X \to Z \supset Y$ be as described. Then h is the composition of $f: X \times Y$ (which is continuous by hypothesis) and the inclusion map $j: Y \to Z$ (which is continuous by part (b)). So, by part (c), h is continuous.

Proof. (f) Suppose $X = \bigcup_{\alpha \in J} U_{\alpha}$ for open U_{α} in X where $f|_{U_{\alpha}}$ is continuous for each $\alpha \in J$. Let V be an open set in Y. Since $f^{-1}(V) \cap U_{\alpha}$ consists of $x \in X \cap U_{\alpha} = U_{\alpha}$ such that $f(x) \in V$ and $(f|_{U_{\alpha}})^{-1}(V)$ consists of $x \in U_{\alpha}$ such that $f(x) \in U_{\alpha}$, then $f^{-1}(V) \cap U_{\alpha} = (f|_{U_{\alpha}})^{-1}(V)$ for all $\alpha \in J$. Since $f|_{U_{\alpha}}$ is continuous by hypothesis, then this set is open in U_{α} and since U_{α} is open then (by Lemma 16.2) this set is open in X.

Proof. (f) Suppose $X = \bigcup_{\alpha \in J} U_{\alpha}$ for open U_{α} in X where $f|_{U_{\alpha}}$ is continuous for each $\alpha \in J$. Let V be an open set in Y. Since $f^{-1}(V) \cap U_{\alpha}$ consists of $x \in X \cap U_{\alpha} = U_{\alpha}$ such that $f(x) \in V$ and $(f|_{U_{\alpha}})^{-1}(V)$ consists of $x \in U_{\alpha}$ such that $f(x) \in U_{\alpha}$, then $f^{-1}(V) \cap U_{\alpha} = (f|_{U_{\alpha}})^{-1}(V)$ for all $\alpha \in J$. Since $f|_{U_{\alpha}}$ is continuous by hypothesis, then this set is open in U_{α} and since U_{α} is open then (by Lemma 16.2) this set is open in X. Since $X = \bigcup_{\alpha \in J} U_{\alpha}$ then

$$f^{-1}(V) = f^{-1}(V) \cap X = f^{-1}(V) \cap (\cup_{\alpha \in J} U_{\alpha}) = \cup_{\alpha \in J} (f^{-1}(V) \cap U_{\alpha})$$

is open in X since each set in the union is open. Therefore (by definition) f is continuous.

Proof. (f) Suppose $X = \bigcup_{\alpha \in J} U_{\alpha}$ for open U_{α} in X where $f|_{U_{\alpha}}$ is continuous for each $\alpha \in J$. Let V be an open set in Y. Since $f^{-1}(V) \cap U_{\alpha}$ consists of $x \in X \cap U_{\alpha} = U_{\alpha}$ such that $f(x) \in V$ and $(f|_{U_{\alpha}})^{-1}(V)$ consists of $x \in U_{\alpha}$ such that $f(x) \in U_{\alpha}$, then $f^{-1}(V) \cap U_{\alpha} = (f|_{U_{\alpha}})^{-1}(V)$ for all $\alpha \in J$. Since $f|_{U_{\alpha}}$ is continuous by hypothesis, then this set is open in U_{α} and since U_{α} is open then (by Lemma 16.2) this set is open in X. Since $X = \bigcup_{\alpha \in J} U_{\alpha}$ then

$$f^{-1}(V)=f^{-1}(V)\cap X=f^{-1}(V)\cap (\cup_{lpha\in J}U_{lpha})=\cup_{lpha\in J}(f^{-1}(V)\cap U_{lpha})$$

is open in X since each set in the union is open. Therefore (by definition) f is continuous.

Theorem 18.3. The Pasting Lemma for Closed Sets.

Let $X = A \cup B$ where A and B are closed in X. Let $f : A \to Y$ and $g : B \to Y$ be continuous. If f(x) = g(x) for all $x \in A \cup B$, then f and g combine (or "paste") to give a continuous function $h : X \to Y$ defined by setting h(x) = f(x) if $x \in A$ and h(x) = g(x) if $x \in B$.

Proof. Let C be closed in Y. Then $h^{-1}(C) = f^{-1}(C) \cup g^{-1}(C)$.

Theorem 18.3. The Pasting Lemma for Closed Sets.

Let $X = A \cup B$ where A and B are closed in X. Let $f : A \to Y$ and $g : B \to Y$ be continuous. If f(x) = g(x) for all $x \in A \cup B$, then f and g combine (or "paste") to give a continuous function $h : X \to Y$ defined by setting h(x) = f(x) if $x \in A$ and h(x) = g(x) if $x \in B$.

Proof. Let *C* be closed in *Y*. Then $h^{-1}(C) = f^{-1}(C) \cup g^{-1}(C)$. Since *f* is continuous by hypothesis then $f^{-1}(C)$ is closed in *A*, by Theorem 18.1 (the $(1)\Rightarrow(3)$ part), and so $f^{-1}(C)$ is closed in *X* since *A* is closed (that is, $f^{-1}(C) = A \cap D$ for closed *D* in *X*, so $f^{-1}(C)$ is closed in *X*). Similarly, $g^{-1}(C)$ is closed in *B* and in *X*.

Theorem 18.3. The Pasting Lemma for Closed Sets.

Let $X = A \cup B$ where A and B are closed in X. Let $f : A \to Y$ and $g : B \to Y$ be continuous. If f(x) = g(x) for all $x \in A \cup B$, then f and g combine (or "paste") to give a continuous function $h : X \to Y$ defined by setting h(x) = f(x) if $x \in A$ and h(x) = g(x) if $x \in B$.

Proof. Let *C* be closed in *Y*. Then $h^{-1}(C) = f^{-1}(C) \cup g^{-1}(C)$. Since *f* is continuous by hypothesis then $f^{-1}(C)$ is closed in *A*, by Theorem 18.1 (the $(1)\Rightarrow(3)$ part), and so $f^{-1}(C)$ is closed in *X* since *A* is closed (that is, $f^{-1}(C) = A \cap D$ for closed *D* in *X*, so $f^{-1}(C)$ is closed in *X*). Similarly, $g^{-1}(C)$ is closed in *B* and in *X*. Therefore $h^{-1}(C)$ is closed in *X* and so by Theorem 18.2 (the $(3)\Rightarrow(1)$ part) *h* is continuous.

Theorem 18.3. The Pasting Lemma for Closed Sets.

Let $X = A \cup B$ where A and B are closed in X. Let $f : A \to Y$ and $g : B \to Y$ be continuous. If f(x) = g(x) for all $x \in A \cup B$, then f and g combine (or "paste") to give a continuous function $h : X \to Y$ defined by setting h(x) = f(x) if $x \in A$ and h(x) = g(x) if $x \in B$.

Proof. Let *C* be closed in *Y*. Then $h^{-1}(C) = f^{-1}(C) \cup g^{-1}(C)$. Since *f* is continuous by hypothesis then $f^{-1}(C)$ is closed in *A*, by Theorem 18.1 (the $(1)\Rightarrow(3)$ part), and so $f^{-1}(C)$ is closed in *X* since *A* is closed (that is, $f^{-1}(C) = A \cap D$ for closed *D* in *X*, so $f^{-1}(C)$ is closed in *X*). Similarly, $g^{-1}(C)$ is closed in *B* and in *X*. Therefore $h^{-1}(C)$ is closed in *X* and so by Theorem 18.2 (the $(3)\Rightarrow(1)$ part) *h* is continuous.

()

Theorem 18.4. Maps into Products.

Let $f : A \to X \times Y$ be given by the equation $f(a) = (f_1(a), f_2(a))$ where $f_1 : A \to X$ and $f_2 : Y \to B$. Then f is continuous if and only if the functions f_1 and f_2 are continuous.

Proof. Let $\pi_1 : X \times Y \to X$ and $\pi_2 : X \times Y \to Y$. Then for U open in X and V open in Y, we have $\pi_1^{-1}(U) = U \times T$ and $\pi_2^{-1}(V) = X \times V$ open in $X \times Y$ (by the definition of product topology; these are basis elements for the product topology on $X \times Y$). So π_1 and π_2 are continuous.

Theorem 18.4. Maps into Products.

Let $f : A \to X \times Y$ be given by the equation $f(a) = (f_1(a), f_2(a))$ where $f_1 : A \to X$ and $f_2 : Y \to B$. Then f is continuous if and only if the functions f_1 and f_2 are continuous.

Proof. Let $\pi_1 : X \times Y \to X$ and $\pi_2 : X \times Y \to Y$. Then for U open in X and V open in Y, we have $\pi_1^{-1}(U) = U \times T$ and $\pi_2^{-1}(V) = X \times V$ open in $X \times Y$ (by the definition of product topology; these are basis elements for the product topology on $X \times Y$). So π_1 and π_2 are continuous. Note that for each $a \in A$, $\pi_1(f(a)) = \pi_1((f_1(a), f_2(a)) = f_1(a)$ and $\pi_2(f(a)) = \pi_2((f_1(a), f_2(a)) = f_2(a)$. So $f_1 = \pi_1 \circ f$ and $f_2 = \pi_2 \circ f$.

Theorem 18.4. Maps into Products.

Let $f : A \to X \times Y$ be given by the equation $f(a) = (f_1(a), f_2(a))$ where $f_1 : A \to X$ and $f_2 : Y \to B$. Then f is continuous if and only if the functions f_1 and f_2 are continuous.

Proof. Let $\pi_1 : X \times Y \to X$ and $\pi_2 : X \times Y \to Y$. Then for U open in X and V open in Y, we have $\pi_1^{-1}(U) = U \times T$ and $\pi_2^{-1}(V) = X \times V$ open in $X \times Y$ (by the definition of product topology; these are basis elements for the product topology on $X \times Y$). So π_1 and π_2 are continuous. Note that for each $a \in A$, $\pi_1(f(a)) = \pi_1((f_1(a), f_2(a)) = f_1(a)$ and $\pi_2(f(a)) = \pi_2((f_1(a), f_2(a)) = f_2(a)$. So $f_1 = \pi_1 \circ f$ and $f_2 = \pi_2 \circ f$. Suppose f is continuous. Then, by Theorem 18.2 part (c), f_1 and f_2 are continuous.

Theorem 18.4. Maps into Products.

Let $f : A \to X \times Y$ be given by the equation $f(a) = (f_1(a), f_2(a))$ where $f_1 : A \to X$ and $f_2 : Y \to B$. Then f is continuous if and only if the functions f_1 and f_2 are continuous.

Proof. Let $\pi_1 : X \times Y \to X$ and $\pi_2 : X \times Y \to Y$. Then for U open in X and V open in Y, we have $\pi_1^{-1}(U) = U \times T$ and $\pi_2^{-1}(V) = X \times V$ open in $X \times Y$ (by the definition of product topology; these are basis elements for the product topology on $X \times Y$). So π_1 and π_2 are continuous. Note that for each $a \in A$, $\pi_1(f(a)) = \pi_1((f_1(a), f_2(a)) = f_1(a)$ and $\pi_2(f(a)) = \pi_2((f_1(a), f_2(a)) = f_2(a)$. So $f_1 = \pi_1 \circ f$ and $f_2 = \pi_2 \circ f$. Suppose f is continuous. Then, by Theorem 18.2 part (c), f_1 and f_2 are continuous.

Theorem 18.4. Maps into Products.

Let $f : A \to X \times Y$ be given by the equation $f(a) = (f_1(a), f_2(a))$ where $f_1 : A \to X$ and $f_2 : Y \to B$. Then f is continuous if and only if the functions f_1 and f_2 are continuous.

Proof (continued). Suppose f_1 and f_2 are continuous. Let $U \times V$ be a basis element for the product topology of $X \times Y$ (so U is open in X and V is open in Y).

Theorem 18.4. Maps into Products.

Let $f : A \to X \times Y$ be given by the equation $f(a) = (f_1(a), f_2(a))$ where $f_1 : A \to X$ and $f_2 : Y \to B$. Then f is continuous if and only if the functions f_1 and f_2 are continuous.

Proof (continued). Suppose f_1 and f_2 are continuous. Let $U \times V$ be a basis element for the product topology of $X \times Y$ (so U is open in X and V is open in Y). Now $a \in f^{-1}(U \times V)$ if and only if $f(a) \in U \times V$, or if and only if $f_1(a) \in U$ and $f_2(a) \in V$, or if and only if $a \in f_1^{-1}(U) \cap f_2^{-1}(V)$. That is, $f^{-1}(U \times V) = f_1(U) \cap f_2^{-1}(V)$. Since f_1 and f_2 are continuous then $f_1^{-1}(U)$ and $f_2^{-1}(V)$ are open in X and so $f^{-1}(U \times V)$ is open in X.

Theorem 18.4. Maps into Products.

Let $f : A \to X \times Y$ be given by the equation $f(a) = (f_1(a), f_2(a))$ where $f_1 : A \to X$ and $f_2 : Y \to B$. Then f is continuous if and only if the functions f_1 and f_2 are continuous.

Proof (continued). Suppose f_1 and f_2 are continuous. Let $U \times V$ be a basis element for the product topology of $X \times Y$ (so U is open in X and V is open in Y). Now $a \in f^{-1}(U \times V)$ if and only if $f(a) \in U \times V$, or if and only if $f_1(a) \in U$ and $f_2(a) \in V$, or if and only if $a \in f_1^{-1}(U) \cap f_2^{-1}(V)$. That is, $f^{-1}(U \times V) = f_1(U) \cap f_2^{-1}(V)$. Since f_1 an df_2 are continuous then $f_1^{-1}(U)$ and $f_2^{-1}(V)$ are open in X and so $f^{-1}(U \times V)$ is open in X. Since every open set in $X \times Y$ can be written as a union of basis elements by Lemma 13.1, say $\bigcup_{\alpha \in J} U_\alpha \times V_\alpha$, and $f^{-1}(\bigcup_{\alpha \in J} U_\alpha \times V_\alpha = \bigcup_{\alpha \in J} f^{-1}(U_\alpha \times V_\alpha)$, then the inverse image of any open set in $X \times Y$ is open in A. That is, f is continuous.

Theorem 18.4. Maps into Products.

Let $f : A \to X \times Y$ be given by the equation $f(a) = (f_1(a), f_2(a))$ where $f_1 : A \to X$ and $f_2 : Y \to B$. Then f is continuous if and only if the functions f_1 and f_2 are continuous.

Proof (continued). Suppose f_1 and f_2 are continuous. Let $U \times V$ be a basis element for the product topology of $X \times Y$ (so U is open in X and V is open in Y). Now $a \in f^{-1}(U \times V)$ if and only if $f(a) \in U \times V$, or if and only if $f_1(a) \in U$ and $f_2(a) \in V$, or if and only if $a \in f_1^{-1}(U) \cap f_2^{-1}(V)$. That is, $f^{-1}(U \times V) = f_1(U) \cap f_2^{-1}(V)$. Since f_1 an df_2 are continuous then $f_1^{-1}(U)$ and $f_2^{-1}(V)$ are open in X and so $f^{-1}(U \times V)$ is open in X. Since every open set in $X \times Y$ can be written as a union of basis elements by Lemma 13.1, say $\bigcup_{\alpha \in J} U_\alpha \times V_\alpha$, and $f^{-1}(\bigcup_{\alpha \in J} U_\alpha \times V_\alpha = \bigcup_{\alpha \in J} f^{-1}(U_\alpha \times V_\alpha)$, then the inverse image of any open set in $X \times Y$ is open in A. That is, f is continuous.