where U_{α} is open in X_{α} for each $\alpha \in J$. The product topology on

 X_lpha for each $lpha\in J$ and $U_lpha=X_lpha$ except for finitely many values of lpha.

 $\prod_{lpha\in J}X_lpha$ has as a basis all sets of the form $\prod_{lpha\in J}U_lpha$ where U_lpha is open in

The box topology on $\prod_{lpha \in J} X_lpha$ has as a basis all sets of the form $\prod_{lpha \in J} U_lpha$

Theorem 19.1. Comparison of the Box and Product Topologies.

Theorem 19.1

Introduction to Topology

Chapter 2. Topological Spaces and Continuous Functions Section 19. The Product Topology—Proofs of Theorems

 $\pi_{\beta}^{-1}(U_{\beta}) \cap \pi_{\beta}^{-1}(V_{\beta}) = \pi_{\beta}^{-1}(U_{\beta} \cap V_{\beta})$ for any U_{β} , V_{β} open in X_{β} and, of course, $U_{\beta} \cap V_{\beta}$ is open in X_{β}), so by induction any finite intersection of elements in S_{β} is again in S_{β} . So finite intersections of elements of S can two elements of \mathcal{S}_{eta} is again an element of \mathcal{S}_{eta} (since elements of ${\mathcal S}$ by the definition of subbasis. Notice that the intersection of that subbasis ${\mathcal S}$ generates. Then ${\mathcal B}$ consists of all finite intersections of definition of the box topology. Let ${\mathcal B}$ be the basis for the product topology number of β 's. be described as finite intersections of elements of \mathcal{S}_{β} for distinct, finite **Proof.** The claim about the box topology is just a restatement of the

Theorem 19.1 (continued)

where U_{α} is open in X_{α} for each $\alpha \in J$. The product topology on The box topology on $\prod_{lpha \in J} X_lpha$ has as a basis all sets of the form $\prod_{lpha \in J} U_lpha$ Theorem 19.1. Comparison of the Box and Product Topologies. X_lpha for each $lpha\in J$ and $U_lpha=X_lpha$ except for finitely many values of lpha. $\prod_{lpha\in J}X_lpha$ has as a basis all sets of the form $\prod_{lpha\in J}U_lpha$ where U_lpha is open in

 $\alpha \in \{\beta_1, \beta_2, \dots, \beta_n\}$, as desired. $Y_{\alpha} = U_{\alpha}$ for $\alpha = \beta$. So basis element $B = \bigcap_{i=1}^{n} \pi_{\beta_{i}}^{-1}(U_{\beta_{i}}) = \prod_{\alpha \in J} Y_{\alpha}$ where $Y_{\alpha} = X_{\alpha}$ for $\alpha \notin \{\beta_{1}, \beta_{2}, \dots, \beta_{n}\}$ and $Y_{\alpha} = U_{\alpha}$ for open in X_{β_i} . Notice $\mathbf{x}=(x+\alpha)\in\prod_{\alpha\in J}X_{\alpha}$ as in $\pi_{\beta}^{-1}(U_{\beta})$ if and only if $x_{\beta} \in \mathcal{U}_{\beta}$. So $\pi_{\beta}^{-1}(\mathcal{U}_{\beta}) = \prod_{\alpha \in J} Y_{\alpha}$ where $Y_{\alpha} = X_{\alpha}$ for $\alpha \neq \beta$ and $B=\cap_{i=1}^n\pi_{\beta_i}^{-1}(U_{\beta_i})$ where $\beta_i\in J$, $\beta_1,\beta_2,\ldots,\beta_n$ are distinct, and U_{β_i} is **Proof** (continued). That is, elements of \mathcal{B} are of the form

I heorem 19.5

then $\prod A_{\alpha} = \prod A_{\alpha}$ for each $\alpha \in J$. If $\prod X_{\alpha}$ is given either the product or the box topology **Theorem 19.5.** Let $\{X_{\alpha}\}$ be an indexed family of spaces and let $A_{\alpha} \subset X_{\alpha}$

Proof. Let $\mathbf{x}=(x_{\alpha})\in \prod \overline{A_{\alpha}}$. Let $\mathcal O$ be an open set in either the box or element for either th ebox or product topology that contains x. Then arbitrary open set containing **x** then $\mathbf{x} \in \prod A_{\alpha}$ by Theorem 17.5(a) and so $x_{\alpha} \in A_{\alpha}$ for each $\alpha \in J$ and so there is $y_{\alpha} \in U_{\alpha} \cap A_{\alpha}$ by Theorem 17.5(a). product topology that contains **x**. Then there is $U = \prod U_{lpha}$ a basis Then $\mathbf{y} = (y_{\alpha}) \in \prod U_{\alpha} = U$ and so $\mathbf{y} \in U \cap \prod A_{\alpha} \subset \mathcal{O}$. Since \mathcal{O} is an

Introduction to Topology

June 12, 2016 4 / 8

June 12, 2016 5 / 8

Introduction to Topology

Theorem 19.5 (continued 1)

then $\prod A_{\alpha} = \prod A_{\alpha}$. for each $\alpha \in J$. If $\prod X_{\alpha}$ is given either the product or the box topology **Theorem 19.5.** Let $\{X_{\alpha}\}$ be an indexed family of spaces and let $A_{\alpha} \subset X_{\alpha}$

by Theorem 17.5(a) we have $x_{\beta} \in A_{\beta}$. Since $\beta \in J$ is arbitrary then topology so by Theorem 17.5(a) it contains a point $\mathbf{y}=(y_{\alpha})\in\prod A_{\alpha}$. So open set of X_{β} containing x_{β} . Since $\pi_{\beta}^{-1}(V_{\beta})$ is open in $\prod X_{\alpha}$ in either closure is taken in either topology). Let $eta\in J$ and let V_eta be an arbitrary **Proof (continued).** Conversely suppose $\mathbf{x}=(x_{\alpha})\in \overline{\prod A_{\alpha}}$ (where the $x_{\alpha} \in \overline{A_{\alpha}}$ for all $\alpha \in J$ an $d\mathbf{x} = (x_{\alpha}) \in \prod \overline{A_{+}\alpha}$. That is, $\prod A_{\alpha} \subset \prod A_{\alpha}$. $y_eta \in V_eta \cap A_eta$. Since V_eta is an arbitrary open set in X_eta containing x_eta then

I heorem 19.6

continuous. where $f_{\alpha}:A\to X_{\alpha}$ for each $\alpha\in J$. Let $\prod X_{\alpha}$ have the product topology. Then the function f is continuous if and only if each functions f_{α} is **Theorem 19.6.** Let $f: A \to \prod_{\alpha \in J} X_{\alpha}$ be given as $f(a) = (f_{\alpha}(a))_{\alpha \in J}$

continuous, the function $f_{\beta}=\pi_{\beta}\circ f$ is continuous by Theorem 18.2(c). subbasis for the product topology and so is open. So for $f:A o \prod X_{lpha}$ is continuous since for open $U_{\beta} \in X_{\beta}$ we have $\pi_{\beta}^{-1}(U_{\beta}) = \prod Y_{\alpha}$ where $Y_{\alpha} = X_{\alpha}$ for $\alpha \neq \beta$ and $Y_{\alpha} = U_{\alpha}$ if $\alpha = \beta$, and this is an element of the **Proof.** Let $\pi_{\beta}: \prod X_{\alpha} \to X_{\beta}$ be the projection mapping. The function π_{β}

Hence, $\prod \overline{A_{\alpha}} = \overline{\prod A_{\alpha}}$, as claimed. Introduction to Topology

Theorem 19.6 (continued)

 $\pi_{eta}^{-1}(U_{eta})$ where $eta\in J$ and U_{eta} is open in X_{eta} (by Theorem 19.1 and the typical subbasis element for the product topology on $\prod X_lpha$ is of the form a union or intersection is the union or intersection of inverse images). A union of finite intersections of subbasis elements and the inverse image of $f^{-1}(\pi_{\beta}^{-1}(U_{\beta}))=(\pi_{\beta}\circ f)^{-1}(U_{\beta})=f_{\beta}^{-1}(U_{\beta})$ since $f_{\beta}=\pi_{\beta}\circ f$. Since f_{β} is form of $B \in \mathcal{B}$ as given in the proof). Now f of each subbasis element is open in A (since each open set in $\prod X_{\alpha}$ is a **Proof** (continued). Conversely, suppose each f_{α} is continuous for $\alpha \in J$. To prove f is continuous, it suffices to prove that the inverse image under

Introduction to Topology

product topology) are open. That is, f is continuous.

images under f of subbasis elements (and hence open set under the

images under f of sets of the form $\pi_{eta}^{-1}(U_{eta})$ are open sets. So inverse

hypothesized to be continuous, then $f_eta^{-1}(U_eta)$ is continuous and so inverse

June 12, 2016 8 / 8