Introduction to Topology

Chapter 2. Topological Spaces and Continuous Functions Section 19. The Product Topology—Proofs of Theorems

Theorem 19.1. Comparison of the Box and Product Topologies. The box topology on $\prod_{\alpha \in J} X_{\alpha}$ has as a basis all sets of the form $\prod_{\alpha \in J} U_{\alpha}$ where U_{α} is open in X_{α} for each $\alpha \in J$. The product topology on $\prod_{\alpha \in J} X_{\alpha}$ has as a basis all sets of the form $\prod_{\alpha \in J} U_{\alpha}$ where U_{α} is open in X_{α} for each $\alpha \in J$ and $U_{\alpha} = X_{\alpha}$ except for finitely many values of α .

Proof. The claim about the box topology is just a restatement of the definition of the box topology.

Theorem 19.1. Comparison of the Box and Product Topologies. The box topology on $\prod_{\alpha \in J} X_{\alpha}$ has as a basis all sets of the form $\prod_{\alpha \in J} U_{\alpha}$ where U_{α} is open in X_{α} for each $\alpha \in J$. The product topology on $\prod_{\alpha \in J} X_{\alpha}$ has as a basis all sets of the form $\prod_{\alpha \in J} U_{\alpha}$ where U_{α} is open in X_{α} for each $\alpha \in J$ and $U_{\alpha} = X_{\alpha}$ except for finitely many values of α .

Proof. The claim about the box topology is just a restatement of the definition of the box topology. Let \mathcal{B} be the basis for the product topology that subbasis \mathcal{S} generates. Then \mathcal{B} consists of all finite intersections of elements of \mathcal{S} by the definition of subbasis.

Theorem 19.1. Comparison of the Box and Product Topologies. The box topology on $\prod_{\alpha \in J} X_{\alpha}$ has as a basis all sets of the form $\prod_{\alpha \in J} U_{\alpha}$ where U_{α} is open in X_{α} for each $\alpha \in J$. The product topology on $\prod_{\alpha \in J} X_{\alpha}$ has as a basis all sets of the form $\prod_{\alpha \in J} U_{\alpha}$ where U_{α} is open in X_{α} for each $\alpha \in J$ and $U_{\alpha} = X_{\alpha}$ except for finitely many values of α .

Proof. The claim about the box topology is just a restatement of the definition of the box topology. Let \mathcal{B} be the basis for the product topology that subbasis \mathcal{S} generates. Then \mathcal{B} consists of all finite intersections of elements of \mathcal{S} by the definition of subbasis. Notice that the intersection of two elements of \mathcal{S}_{β} is again an element of \mathcal{S}_{β} (since $\pi_{\beta}^{-1}(U_{\beta}) \cap \pi_{\beta}^{-1}(V_{\beta}) = \pi_{\beta}^{-1}(U_{\beta} \cap V_{\beta})$ for any U_{β}, V_{β} open in X_{β} and, of course, $U_{\beta} \cap V_{\beta}$ is open in X_{β}), so by induction any finite intersection of elements in \mathcal{S}_{β} is again in \mathcal{S}_{β} . So finite intersections of elements of \mathcal{S} can be described as finite intersections of elements of \mathcal{S}_{β} for distinct, finite number of β 's.

()

Theorem 19.1. Comparison of the Box and Product Topologies. The box topology on $\prod_{\alpha \in J} X_{\alpha}$ has as a basis all sets of the form $\prod_{\alpha \in J} U_{\alpha}$ where U_{α} is open in X_{α} for each $\alpha \in J$. The product topology on $\prod_{\alpha \in J} X_{\alpha}$ has as a basis all sets of the form $\prod_{\alpha \in J} U_{\alpha}$ where U_{α} is open in X_{α} for each $\alpha \in J$ and $U_{\alpha} = X_{\alpha}$ except for finitely many values of α .

Proof. The claim about the box topology is just a restatement of the definition of the box topology. Let \mathcal{B} be the basis for the product topology that subbasis \mathcal{S} generates. Then \mathcal{B} consists of all finite intersections of elements of \mathcal{S} by the definition of subbasis. Notice that the intersection of two elements of \mathcal{S}_{β} is again an element of \mathcal{S}_{β} (since $\pi_{\beta}^{-1}(U_{\beta}) \cap \pi_{\beta}^{-1}(V_{\beta}) = \pi_{\beta}^{-1}(U_{\beta} \cap V_{\beta})$ for any U_{β}, V_{β} open in X_{β} and, of course, $U_{\beta} \cap V_{\beta}$ is open in X_{β}), so by induction any finite intersection of elements in \mathcal{S}_{β} is again in \mathcal{S}_{β} . So finite intersections of elements of \mathcal{S} can be described as finite intersections of elements of \mathcal{S}_{β} for distinct, finite number of β 's.

- ()

Theorem 19.1. Comparison of the Box and Product Topologies. The box topology on $\prod_{\alpha \in J} X_{\alpha}$ has as a basis all sets of the form $\prod_{\alpha \in J} U_{\alpha}$ where U_{α} is open in X_{α} for each $\alpha \in J$. The product topology on $\prod_{\alpha \in J} X_{\alpha}$ has as a basis all sets of the form $\prod_{\alpha \in J} U_{\alpha}$ where U_{α} is open in X_{α} for each $\alpha \in J$ and $U_{\alpha} = X_{\alpha}$ except for finitely many values of α .

Proof (continued). That is, elements of \mathcal{B} are of the form $B = \bigcap_{i=1}^{n} \pi_{\beta_i}^{-1}(U_{\beta_i})$ where $\beta_i \in J$, $\beta_1, \beta_2, \ldots, \beta_n$ are distinct, and U_{β_i} is open in X_{β_i} . Notice $\mathbf{x} = (\mathbf{x} + \alpha) \in \prod_{\alpha \in J} X_\alpha$ as in $\pi_{\beta}^{-1}(U_{\beta})$ if and only if $x_{\beta} \in U_{\beta}$. So $\pi_{\beta}^{-1}(U_{\beta}) = \prod_{\alpha \in J} Y_{\alpha}$ where $Y_{\alpha} = X_{\alpha}$ for $\alpha \neq \beta$ and $Y_{\alpha} = U_{\alpha}$ for $\alpha = \beta$. So basis element $B = \bigcap_{i=1}^{n} \pi_{\beta_i}^{-1}(U_{\beta_i}) = \prod_{\alpha \in J} Y_{\alpha}$ where $Y_{\alpha} = X_{\alpha}$ for $\alpha \notin \{\beta_1, \beta_2, \ldots, \beta_n\}$ and $Y_{\alpha} = U_{\alpha}$ for $\alpha \in \{\beta_1, \beta_2, \ldots, \beta_n\}$, as desired.

Theorem 19.1. Comparison of the Box and Product Topologies. The box topology on $\prod_{\alpha \in J} X_{\alpha}$ has as a basis all sets of the form $\prod_{\alpha \in J} U_{\alpha}$ where U_{α} is open in X_{α} for each $\alpha \in J$. The product topology on $\prod_{\alpha \in J} X_{\alpha}$ has as a basis all sets of the form $\prod_{\alpha \in J} U_{\alpha}$ where U_{α} is open in X_{α} for each $\alpha \in J$ and $U_{\alpha} = X_{\alpha}$ except for finitely many values of α .

Proof (continued). That is, elements of \mathcal{B} are of the form $B = \bigcap_{i=1}^{n} \pi_{\beta_i}^{-1}(U_{\beta_i})$ where $\beta_i \in J$, $\beta_1, \beta_2, \ldots, \beta_n$ are distinct, and U_{β_i} is open in X_{β_i} . Notice $\mathbf{x} = (\mathbf{x} + \alpha) \in \prod_{\alpha \in J} X_\alpha$ as in $\pi_{\beta}^{-1}(U_{\beta})$ if and only if $x_{\beta} \in U_{\beta}$. So $\pi_{\beta}^{-1}(U_{\beta}) = \prod_{\alpha \in J} Y_{\alpha}$ where $Y_{\alpha} = X_{\alpha}$ for $\alpha \neq \beta$ and $Y_{\alpha} = U_{\alpha}$ for $\alpha = \beta$. So basis element $B = \bigcap_{i=1}^{n} \pi_{\beta_i}^{-1}(U_{\beta_i}) = \prod_{\alpha \in J} Y_{\alpha}$ where $Y_{\alpha} = X_{\alpha}$ for $\alpha \notin \{\beta_1, \beta_2, \ldots, \beta_n\}$ and $Y_{\alpha} = U_{\alpha}$ for $\alpha \in \{\beta_1, \beta_2, \ldots, \beta_n\}$, as desired.

Theorem 19.5. Let $\{X_{\alpha}\}$ be an indexed family of spaces and let $A_{\alpha} \subset X_{\alpha}$ for each $\alpha \in J$. If $\prod X_{\alpha}$ is given either the product or the box topology then $\prod \overline{A_{\alpha}} = \prod \overline{A_{\alpha}}$.

Proof. Let $\mathbf{x} = (x_{\alpha}) \in \prod \overline{A_{\alpha}}$. Let \mathcal{O} be an open set in either the box or product topology that contains \mathbf{x} .

Theorem 19.5. Let $\{X_{\alpha}\}$ be an indexed family of spaces and let $A_{\alpha} \subset X_{\alpha}$ for each $\alpha \in J$. If $\prod X_{\alpha}$ is given either the product or the box topology then $\prod \overline{A_{\alpha}} = \prod \overline{A_{\alpha}}$.

Proof. Let $\mathbf{x} = (x_{\alpha}) \in \prod \overline{A_{\alpha}}$. Let \mathcal{O} be an open set in either the box or product topology that contains \mathbf{x} . Then there is $U = \prod U_{\alpha}$ a basis element for either th ebox or product topology that contains \mathbf{x} . Then $x_{\alpha} \in \overline{A_{\alpha}}$ for each $\alpha \in J$ and so there is $y_{\alpha} \in U_{\alpha} \cap A_{\alpha}$ by Theorem 17.5(a). Then $\mathbf{y} = (y_{\alpha}) \in \prod U_{\alpha} = U$ and so $\mathbf{y} \in U \cap \prod A_{\alpha} \subset \mathcal{O}$.

Theorem 19.5. Let $\{X_{\alpha}\}$ be an indexed family of spaces and let $A_{\alpha} \subset X_{\alpha}$ for each $\alpha \in J$. If $\prod X_{\alpha}$ is given either the product or the box topology then $\prod \overline{A_{\alpha}} = \prod \overline{A_{\alpha}}$.

Proof. Let $\mathbf{x} = (x_{\alpha}) \in \prod \overline{A_{\alpha}}$. Let \mathcal{O} be an open set in either the box or product topology that contains \mathbf{x} . Then there is $U = \prod U_{\alpha}$ a basis element for either th ebox or product topology that contains \mathbf{x} . Then $x_{\alpha} \in \overline{A_{\alpha}}$ for each $\alpha \in J$ and so there is $y_{\alpha} \in U_{\alpha} \cap A_{\alpha}$ by Theorem 17.5(a). Then $\mathbf{y} = (y_{\alpha}) \in \prod U_{\alpha} = U$ and so $\mathbf{y} \in U \cap \prod A_{\alpha} \subset \mathcal{O}$. Since \mathcal{O} is an arbitrary open set containing \mathbf{x} then $\mathbf{x} \in \overline{\prod A_{\alpha}}$ by Theorem 17.5(a) and so $\prod \overline{A_{\alpha}} \subset \overline{\prod A_{\alpha}}$.

Theorem 19.5. Let $\{X_{\alpha}\}$ be an indexed family of spaces and let $A_{\alpha} \subset X_{\alpha}$ for each $\alpha \in J$. If $\prod X_{\alpha}$ is given either the product or the box topology then $\prod \overline{A_{\alpha}} = \prod \overline{A_{\alpha}}$.

Proof. Let $\mathbf{x} = (x_{\alpha}) \in \prod \overline{A_{\alpha}}$. Let \mathcal{O} be an open set in either the box or product topology that contains \mathbf{x} . Then there is $U = \prod U_{\alpha}$ a basis element for either th ebox or product topology that contains \mathbf{x} . Then $x_{\alpha} \in \overline{A_{\alpha}}$ for each $\alpha \in J$ and so there is $y_{\alpha} \in U_{\alpha} \cap A_{\alpha}$ by Theorem 17.5(a). Then $\mathbf{y} = (y_{\alpha}) \in \prod U_{\alpha} = U$ and so $\mathbf{y} \in U \cap \prod A_{\alpha} \subset \mathcal{O}$. Since \mathcal{O} is an arbitrary open set containing \mathbf{x} then $\mathbf{x} \in \overline{\prod A_{\alpha}}$ by Theorem 17.5(a) and so $\prod \overline{A_{\alpha}} \subset \overline{\prod A_{\alpha}}$.

Theorem 19.5. Let $\{X_{\alpha}\}$ be an indexed family of spaces and let $A_{\alpha} \subset X_{\alpha}$ for each $\alpha \in J$. If $\prod X_{\alpha}$ is given either the product or the box topology then $\prod \overline{A_{\alpha}} = \prod \overline{A_{\alpha}}$.

Proof (continued). Conversely suppose $\mathbf{x} = (x_{\alpha}) \in \overline{\prod A_{\alpha}}$ (where the closure is taken in either topology). Let $\beta \in J$ and let V_{β} be an arbitrary open set of X_{β} containing x_{β} . Since $\pi_{\beta}^{-1}(V_{\beta})$ is open in $\prod X_{\alpha}$ in either topology so by Theorem 17.5(a) it contains a point $\mathbf{y} = (y_{\alpha}) \in \prod A_{\alpha}$. So $y_{\beta} \in V_{\beta} \cap A_{\beta}$.

Theorem 19.5. Let $\{X_{\alpha}\}$ be an indexed family of spaces and let $A_{\alpha} \subset X_{\alpha}$ for each $\alpha \in J$. If $\prod X_{\alpha}$ is given either the product or the box topology then $\prod \overline{A_{\alpha}} = \prod \overline{A_{\alpha}}$.

Proof (continued). Conversely suppose $\mathbf{x} = (x_{\alpha}) \in \overline{\prod A_{\alpha}}$ (where the closure is taken in either topology). Let $\beta \in J$ and let V_{β} be an arbitrary open set of X_{β} containing x_{β} . Since $\pi_{\beta}^{-1}(V_{\beta})$ is open in $\prod X_{\alpha}$ in either topology so by Theorem 17.5(a) it contains a point $\mathbf{y} = (y_{\alpha}) \in \prod A_{\alpha}$. So $y_{\beta} \in V_{\beta} \cap A_{\beta}$. Since V_{β} is an arbitrary open set in X_{β} containing x_{β} then by Theorem 17.5(a) we have $x_{\beta} \in \overline{A_{\beta}}$. Since $\beta \in J$ is arbitrary then $x_{\alpha} \in \overline{A_{\alpha}}$ for all $\alpha \in J$ an $d\mathbf{x} = (x_{\alpha}) \in \prod \overline{A_{+\alpha}}$.

Theorem 19.5. Let $\{X_{\alpha}\}$ be an indexed family of spaces and let $A_{\alpha} \subset X_{\alpha}$ for each $\alpha \in J$. If $\prod X_{\alpha}$ is given either the product or the box topology then $\prod \overline{A_{\alpha}} = \prod \overline{A_{\alpha}}$.

Proof (continued). Conversely suppose $\mathbf{x} = (x_{\alpha}) \in \overline{\prod A_{\alpha}}$ (where the closure is taken in either topology). Let $\beta \in J$ and let V_{β} be an arbitrary open set of X_{β} containing x_{β} . Since $\pi_{\beta}^{-1}(V_{\beta})$ is open in $\prod X_{\alpha}$ in either topology so by Theorem 17.5(a) it contains a point $\mathbf{y} = (y_{\alpha}) \in \prod A_{\alpha}$. So $y_{\beta} \in V_{\beta} \cap A_{\beta}$. Since V_{β} is an arbitrary open set in X_{β} containing x_{β} then by Theorem 17.5(a) we have $x_{\beta} \in \overline{A_{\beta}}$. Since $\beta \in J$ is arbitrary then $x_{\alpha} \in \overline{A_{\alpha}}$ for all $\alpha \in J$ an d $\mathbf{x} = (x_{\alpha}) \in \prod \overline{A_{+\alpha}}$. That is, $\overline{\prod A_{\alpha}} \subset \prod \overline{A_{\alpha}}$. Hence, $\prod \overline{A_{\alpha}} = \overline{\prod A_{\alpha}}$, as claimed.

Theorem 19.5. Let $\{X_{\alpha}\}$ be an indexed family of spaces and let $A_{\alpha} \subset X_{\alpha}$ for each $\alpha \in J$. If $\prod X_{\alpha}$ is given either the product or the box topology then $\prod \overline{A_{\alpha}} = \prod \overline{A_{\alpha}}$.

Proof (continued). Conversely suppose $\mathbf{x} = (x_{\alpha}) \in \overline{\prod A_{\alpha}}$ (where the closure is taken in either topology). Let $\beta \in J$ and let V_{β} be an arbitrary open set of X_{β} containing x_{β} . Since $\pi_{\beta}^{-1}(V_{\beta})$ is open in $\prod X_{\alpha}$ in either topology so by Theorem 17.5(a) it contains a point $\mathbf{y} = (y_{\alpha}) \in \prod A_{\alpha}$. So $y_{\beta} \in V_{\beta} \cap A_{\beta}$. Since V_{β} is an arbitrary open set in X_{β} containing x_{β} then by Theorem 17.5(a) we have $x_{\beta} \in \overline{A_{\beta}}$. Since $\beta \in J$ is arbitrary then $x_{\alpha} \in \overline{A_{\alpha}}$ for all $\alpha \in J$ an $d\mathbf{x} = (x_{\alpha}) \in \prod \overline{A_{+\alpha}}$. That is, $\overline{\prod A_{\alpha}} \subset \prod \overline{A_{\alpha}}$. Hence, $\prod \overline{A_{\alpha}} = \overline{\prod A_{\alpha}}$, as claimed.

Theorem 19.6. Let $f : A \to \prod_{\alpha \in J} X_{\alpha}$ be given as $f(a) = (f_{\alpha}(a))_{\alpha \in J}$ where $f_{\alpha} : A \to X_{\alpha}$ for each $\alpha \in J$. Let $\prod X_{\alpha}$ have the product topology. Then the function f is continuous if and only if each functions f_{α} is continuous.

Proof. Let $\pi_{\beta} : \prod X_{\alpha} \to X_{\beta}$ be the projection mapping.

Theorem 19.6. Let $f : A \to \prod_{\alpha \in J} X_{\alpha}$ be given as $f(a) = (f_{\alpha}(a))_{\alpha \in J}$ where $f_{\alpha} : A \to X_{\alpha}$ for each $\alpha \in J$. Let $\prod X_{\alpha}$ have the product topology. Then the function f is continuous if and only if each functions f_{α} is continuous.

Proof. Let $\pi_{\beta} : \prod X_{\alpha} \to X_{\beta}$ be the projection mapping. The function π_{β} is continuous since for open $U_{\beta} \in X_{\beta}$ we have $\pi_{\beta}^{-1}(U_{\beta}) = \prod Y_{\alpha}$ where $Y_{\alpha} = X_{\alpha}$ for $\alpha \neq \beta$ and $Y_{\alpha} = U_{\alpha}$ if $\alpha = \beta$, and this is an element of the subbasis for the product topology and so is open.

Theorem 19.6. Let $f : A \to \prod_{\alpha \in J} X_{\alpha}$ be given as $f(a) = (f_{\alpha}(a))_{\alpha \in J}$ where $f_{\alpha} : A \to X_{\alpha}$ for each $\alpha \in J$. Let $\prod X_{\alpha}$ have the product topology. Then the function f is continuous if and only if each functions f_{α} is continuous.

Proof. Let $\pi_{\beta} : \prod X_{\alpha} \to X_{\beta}$ be the projection mapping. The function π_{β} is continuous since for open $U_{\beta} \in X_{\beta}$ we have $\pi_{\beta}^{-1}(U_{\beta}) = \prod Y_{\alpha}$ where $Y_{\alpha} = X_{\alpha}$ for $\alpha \neq \beta$ and $Y_{\alpha} = U_{\alpha}$ if $\alpha = \beta$, and this is an element of the subbasis for the product topology and so is open. So for $f : A \to \prod X_{\alpha}$ continuous, the function $f_{\beta} = \pi_{\beta} \circ f$ is continuous by Theorem 18.2(c).

Theorem 19.6. Let $f : A \to \prod_{\alpha \in J} X_{\alpha}$ be given as $f(a) = (f_{\alpha}(a))_{\alpha \in J}$ where $f_{\alpha} : A \to X_{\alpha}$ for each $\alpha \in J$. Let $\prod X_{\alpha}$ have the product topology. Then the function f is continuous if and only if each functions f_{α} is continuous.

Proof. Let $\pi_{\beta} : \prod X_{\alpha} \to X_{\beta}$ be the projection mapping. The function π_{β} is continuous since for open $U_{\beta} \in X_{\beta}$ we have $\pi_{\beta}^{-1}(U_{\beta}) = \prod Y_{\alpha}$ where $Y_{\alpha} = X_{\alpha}$ for $\alpha \neq \beta$ and $Y_{\alpha} = U_{\alpha}$ if $\alpha = \beta$, and this is an element of the subbasis for the product topology and so is open. So for $f : A \to \prod X_{\alpha}$ continuous, the function $f_{\beta} = \pi_{\beta} \circ f$ is continuous by Theorem 18.2(c).

Proof (continued). Conversely, suppose each f_{α} is continuous for $\alpha \in J$. To prove f is continuous, it suffices to prove that the inverse image under f of each subbasis element is open in A (since each open set in $\prod X_{\alpha}$ is a union of finite intersections of subbasis elements and the inverse image of a union or intersection is the union or intersection of inverse images). A typical subbasis element for the product topology on $\prod X_{\alpha}$ is of the form $\pi_{\beta}^{-1}(U_{\beta})$ where $\beta \in J$ and U_{β} is open in X_{β} (by Theorem 19.1 and the form of $B \in \mathcal{B}$ as given in the proof).

Proof (continued). Conversely, suppose each f_{α} is continuous for $\alpha \in J$. To prove f is continuous, it suffices to prove that the inverse image under f of each subbasis element is open in A (since each open set in $\prod X_{\alpha}$ is a union of finite intersections of subbasis elements and the inverse image of a union or intersection is the union or intersection of inverse images). A typical subbasis element for the product topology on $\prod X_{\alpha}$ is of the form $\pi_{\beta}^{-1}(U_{\beta})$ where $\beta \in J$ and U_{β} is open in X_{β} (by Theorem 19.1 and the form of $B \in \mathcal{B}$ as given in the proof). Now $f^{-1}(\pi_{\beta}^{-1}(U_{\beta})) = (\pi_{\beta} \circ f)^{-1}(U_{\beta}) = f_{\beta}^{-1}(U_{\beta})$ since $f_{\beta} = \pi_{\beta} \circ f$. Since f_{β} is hypothesized to be continuous, then $f_{\beta}^{-1}(U_{\beta})$ is continuous and so inverse images under f of sets of the form $\pi_{\beta}^{-1}(U_{\beta})$ are open sets.

Proof (continued). Conversely, suppose each f_{α} is continuous for $\alpha \in J$. To prove f is continuous, it suffices to prove that the inverse image under f of each subbasis element is open in A (since each open set in $\prod X_{\alpha}$ is a union of finite intersections of subbasis elements and the inverse image of a union or intersection is the union or intersection of inverse images). A typical subbasis element for the product topology on $\prod X_{\alpha}$ is of the form $\pi_{\beta}^{-1}(U_{\beta})$ where $\beta \in J$ and U_{β} is open in X_{β} (by Theorem 19.1 and the form of $B \in \mathcal{B}$ as given in the proof). Now $f^{-1}(\pi_{\beta}^{-1}(U_{\beta})) = (\pi_{\beta} \circ f)^{-1}(U_{\beta}) = f_{\beta}^{-1}(U_{\beta})$ since $f_{\beta} = \pi_{\beta} \circ f$. Since f_{β} is hypothesized to be continuous, then $f_{\beta}^{-1}(U_{\beta})$ is continuous and so inverse images under f of sets of the form $\pi_{\beta}^{-1}(U_{\beta})$ are open sets. So inverse images under f of subbasis elements (and hence open set under the product topology) are open. That is, f is continuous.

Proof (continued). Conversely, suppose each f_{α} is continuous for $\alpha \in J$. To prove f is continuous, it suffices to prove that the inverse image under f of each subbasis element is open in A (since each open set in $\prod X_{\alpha}$ is a union of finite intersections of subbasis elements and the inverse image of a union or intersection is the union or intersection of inverse images). A typical subbasis element for the product topology on $\prod X_{\alpha}$ is of the form $\pi_{\beta}^{-1}(U_{\beta})$ where $\beta \in J$ and U_{β} is open in X_{β} (by Theorem 19.1 and the form of $B \in \mathcal{B}$ as given in the proof). Now $f^{-1}(\pi_{\beta}^{-1}(U_{\beta})) = (\pi_{\beta} \circ f)^{-1}(U_{\beta}) = f_{\beta}^{-1}(U_{\beta})$ since $f_{\beta} = \pi_{\beta} \circ f$. Since f_{β} is hypothesized to be continuous, then $f_{eta}^{-1}(U_{eta})$ is continuous and so inverse images under f of sets of the form $\pi_{\beta}^{-1}(U_{\beta})$ are open sets. So inverse images under f of subbasis elements (and hence open set under the product topology) are open. That is, f is continuous.