Introduction to Topology

Chapter 2. Topological Spaces and Continuous Functions Section 20. The Metric Topology—Proofs of Theorems

Theorem 20.1 (continued)

balls centered at these elements with radius less than 1 (here we use all elements of $B_d(x,\varepsilon)$ of balls centered at these elements of $B_d(x,\varepsilon)$ of topology generated by \mathcal{B}' is a subset of the topology generated by $\mathcal{B}.$ But Notice that \mathcal{B}' consists of all arepsilon-balls where arepsilon<1, so $\mathcal{B}'\subset\mathcal{B}$ and the topology generated by a basis consists of all unions of basis elements **Proof (continued).** Let \mathcal{B} be the basis for the topology induced by d and Lemma 20.A): for any $B_d(x,\varepsilon)\in\mathcal{B}$ we know that $B_d(x,\varepsilon)$ can be written as a union over let \mathcal{B}' be the basis for the topology induced by d. By Lemma 13.1, the

$$B_{x}(x,\varepsilon) = \bigcup_{y \in B_{d}(x,\varepsilon)} B_{d}(y,\delta_{y})$$

every set in the topology generated by ${\mathcal B}$ is also in the topology generated where $\delta_y = \min\{\delta, 1\}$ and $B_d(y, \delta) \subset B_d(x, \varepsilon)$ as in Lemma 20.A. So topology on Xby $\mathcal{B}'.$ So the topologies are the same and d and \overline{d} induce the same

Theorem 20.1

induces the same topology as d. $\overline{d}:X imes X o \mathbb{R}$ by $\overline{d}(x,y)=\min\{d(x,y),1\}$. Then \overline{d} is a metric that **Theorem 20.1.** Let X be a metric space with metric d. Define

by d. The the third part, we need to confirm the Triangle Inequality: **Proof.** "Clearly" the first two parts of the definition of metric are satisfied

$$d(x,z) \leq d(x,y) + d(y,z).$$

We consider two cases.

inequality is at least 1 and so the inequality holds. Case 1. If either $d(x,y) \ge 1$ or $d(y,z) \ge 1$ then the right side of this

Case 2. If both d(x, y) < 1 and d(y, z) < 1 then

$$d(x,z) \le d(x,y) + d(y,z)$$
 by the Triangle Inequality for $d = \overline{d}(x,y) + \overline{d}(y,z)$.

Since $\overline{d}(x,z) < d(x,z)$, we have the Triangle Inequality for \overline{d} . So \overline{d} is in fact a metric.

Introduction to Topology

3 / 14

Lemma 20.2

only if for such $x \in X$ and each $\varepsilon > 0$, there exists a $\delta > 0$ such that be the topologies they induce, respectively. Then \mathcal{T}' is finer than \mathcal{T} is and $B_{d'}(x,\delta) \subset B_d(x,\varepsilon)$. **Lemma 20.2.** Let d and d' be two metrics on the set X. Let T and T'

for the metric topology \mathcal{T} . By Lemma 13.3 (the $(1)\Rightarrow(2)$ part) there is a $B_{d'}(x,\delta) \subset B' \subset B_d(x,\varepsilon)$ and the first claim holds. basis element $\mathcal{B}' \subset B_d(x,\varepsilon)$. By Lemma 20.B, there is **Proof.** Suppose that \mathcal{T}' is finer than \mathcal{T} . Let $\mathcal{B}_d(x,\varepsilon)$ be a basis element

finer than \mathcal{T} . Suppose the δ/ε condition holds. Given a basis element ${\cal B}$ for the metric $B'=B_{d'}(x,\delta)\subset B_d(x,\varepsilon)\subset B$. By Lemma 13.3 (the (2) \Rightarrow (1) part), T' is $B_d(x,\varepsilon)\subset B.$ By the hypothesized δ/ε condition there is topology for \mathcal{T} containing x, by Lemma 20.B there is a basis element

I heorem 20.3

and the square metric ρ are the same as the product topology on \mathbb{R}^n **Theorem 20.3.** The topologies on \mathbb{R}^n induced by the Euclidean metric

Proof. Let $\mathbf{x} = (x_1, x_2, \dots, x_n)$ and $\mathbf{y} = y_1, y_2, \dots, y_n)$ be points in \mathbb{R}^n .

$$\rho(\mathbf{x}, \mathbf{y}) = \max_{1 \le i \le n} \{|x_i - y_i|\} \le \left(\sum_{i=1}^n |x_i - y_i|^2\right)^{1/2} = d(\mathbf{x}, \mathbf{y})$$

$$\leq \left(\sum_{i=1}^{n} \max_{1 \leq i \leq n} |x_i - y_i|^2\right)^{1/2} = \left(\sum_{i=1}^{n} \rho(\mathbf{x}, \mathbf{y})^2\right)^{1/2} = \sqrt{n}\rho(\mathbf{x}, \mathbf{y}). \quad (*)$$

induced by ρ . For $\mathbf{y} \in B_{\rho}(\mathbf{x}, \varepsilon/\sqrt{n})$ we have $\rho(\mathbf{x}, \mathbf{y} < \varepsilon/\sqrt{n})$ and so 20.2, the metric topology induced by d is finer than the metric topology (*) and so $\mathbf{y} \in \mathcal{B}_{\rho}(\mathbf{x}, \varepsilon)$. Therefore $\mathcal{B}_{d}(\mathbf{x}, \varepsilon) \subset \mathcal{B}_{\rho}(\mathbf{x}, \varepsilon)$ and by Lemma Now for $\mathbf{y} \in B_d(\mathbf{x}, \varepsilon)$ we have $d(\mathbf{x}, \mathbf{y}) < \varepsilon$ and so $\rho(\mathbf{x}, \varepsilon) < d(\mathbf{x}, \mathbf{y}) < \varepsilon$ (by

 $d(\mathbf{x},\mathbf{y}) \leq \sqrt{n\rho(\mathbf{x},\mathbf{y})} = \sqrt{n(\varepsilon/\sqrt{n})} = \varepsilon \text{ (by (*)) and } \mathbf{y} \in B_d(\mathbf{x},\varepsilon).$

Theorem 20.3 (continued 2)

and the square metric ρ are the same as the product topology on \mathbb{R}^n **Theorem 20.3.** The topologies on \mathbb{R}^n induced by the Euclidean metric d

Proof (continued). Conversely, let $B_{\rho}(\mathbf{x}, \varepsilon)$ be a basis element for the metric topology induced by ρ . Let $\mathbf{y} \in B_{\rho}(\mathbf{x}, \varepsilon)$. Let

$$B = B_{\rho}(\mathbf{x}, \varepsilon) = (x_1 - \varepsilon_1, x_1 + \varepsilon_1) \times (x_2 - \varepsilon_2, x_2 + \varepsilon_2) \times \cdots \times (x_n - \varepsilon_n, x_n + \varepsilon_n).$$

above) are the same by Lemma 13.3 (the $(2)\Rightarrow(1)$ part), the product topology is finer than the topology induced by ho (AND the metric topology induced by d, as shown metric topology induced by ρ . Therefore the box topology and the metric Then $B \subset B_{\rho}(\mathbf{x}, \varepsilon)$ and B is a basis element for the product topology. So

Theorem 20.3 (continued 1)

Set $\varepsilon = \min_{1 \le i \le n} \{ \varepsilon_i \}$. Then element for the product topology. Let $\mathbf{x} = (x_1, x_2, \dots, x_n) \in B$. Then $x_i \in (a_i, b_i)$ for each i and so there is $\varepsilon_i > 0$ such that induced by ρ . First, let $B = (a_1, b_1) \times (a_2, b_2) \times \cdots \times (a_n, b_n)$ be a basis Now to show that the product topology is the same as the metric topology by d. Hence, the metric topologies under d and ho are the same. the metric topology induced by ho is finer than the metric topology induced **Proof (continued).** Therefore $B_{\rho}(\mathbf{x}, \varepsilon) \subset B_{d}(\mathbf{x}, \varepsilon)$ and by Lemma 20.2, $(x_i - \varepsilon_i, x_i + \varepsilon_i) \subset (a_i, b_i)$ (take, for example, $\varepsilon_i = \min\{x_i - a_i, b_i - x_i\}$).

$$B_{\rho}(x,\varepsilon)\subset (x_1-\varepsilon_1,x_1+\varepsilon_1)\times (x_2-\varepsilon_2,x_2+\varepsilon_2)\times \cdots \times (x_n-\varepsilon_n,x_n+\varepsilon_n)\subset B.$$

So by Lemma 13.3 (the (2) \Rightarrow (1) part), the metric topology induced by hois finer than the product topology.

Theorem 20.4

different if J is infinite. topology and coarser than the box topology. These three topologies are **Theorem 20.4.** The uniform topology on \mathbb{R}^J is finer than the product

the uniform topology is finer than the product topology. **Proof.** Let $\mathbf{x} = (x_{\alpha})_{\alpha \in J} \in \mathbb{R}^J$ and let B be a basis element for the metric $\overline{\rho}$ (i.e., the uniform topology). By Lemma 13.3 (the (2) \Rightarrow (1) part) Since $B_{\overline{\rho}}(\mathbf{x},\varepsilon)$ is a basis element for the metric topology on \mathbb{R}^J induced by standard topology and d and D induce the same topology on $\mathbb R$ by $B_{\overline{d}}(x_i,arepsilon_i)\subset U_{lpha_i}$ (which can be done since U_lpha is open in $\mathbb R$ under the α (say $\alpha_1, \alpha_2, \ldots, \alpha_n$). For each $i = 1, 2, \ldots, n$, choose $\varepsilon_i > 0$ so that where each U_lpha is open in $\mathbb R$ and $U_lpha=\mathbb R$ for all but finitely many values product topology which contains **x**. Then by Theorem 19.1, $B = \prod U_{\alpha}$ Theorem 20.1). Let $arepsilon=\min\{arepsilon_1,arepsilon_2,\ldots,arepsilon_n\}$. Then $B_{\overline{
ho}}(\mathbf{x},arepsilon)\subset \mathbb{R}$

Theorem 20.4 (continued)

different if J is infinite. topology and coarser than the box topology. These three topologies are all **Theorem 20.4.** The uniform topology on \mathbb{R}^J is finer than the product

uniform topology. Then the open set **Proof (continued).** Now let $B = B_{\overline{\rho}}(\mathbf{x}, \varepsilon)$ be a basis element for the

$$U = \prod_{\alpha \in I} (x_{\alpha} - \varepsilon/2, x_{\alpha} + \varepsilon/2)$$

13.3, the box topology is finer than the uniform topology is a basis element for the box topology and $\mathbf{x} \in U \subset B$. So by Lemma

a homework exercise. The fact that the three topologies are different when J is infinite is left as

I heorem 20.5

metric on \mathbb{R} . If **x** and **y** are two points in $\mathbb{R}^{\omega} = \mathbb{R}^{\mathbb{N}}$, define **Theorem 20.5.** Let $\overline{d}(a,b) = \min\{|a-b|,1\}$ be the standard bounded

$$D(\mathbf{x},\mathbf{y}) = \sup_{i \in \mathbb{N}} \left\{ \frac{d(x_i,y_i)}{i} \right\}.$$

under the product topology is metrizable. Then D is a metric that induces the product topology on \mathbb{R}^ω . That is, \mathbb{R}^ω

by D. Notice that for all $i \in \mathbb{N}$, by the Triangle Inequality for d, **Proof.** The first two parts of the definition of metric are clearly satisfied

$$\frac{d(x_i,z_i)}{i} \leq \frac{d(x_i,y_i)}{i} + \frac{d(y_i,z_i)}{i} \leq D(\mathbf{x},\mathbf{y}) + D(\mathbf{y},\mathbf{z}).$$

$$D(\mathbf{x}, \mathbf{z}) = \sup_{i \in \mathbb{N}} \left\{ \frac{\overline{d}(x_i, z_i)}{i} \right\} \leq D(\mathbf{x}, \mathbf{y}) + D(\mathbf{y}, \mathbf{z}),$$

and the Triangle Inequality holds for D and D is a metric on \mathbb{R}^ω

Theorem 20.5 (continued 1)

topology by D and let $\mathbf{x} \in U$. Choose $\varepsilon > 0$ such that $B_D(\mathbf{x}, \varepsilon) \subset U$ and choose **Proof** (continued). Let U be an open set in the metric topology induced $N\in\mathbb{N}$ such that 1/N<arepsilon. Let V be the basis element for the product

$$V = (x_1 - \varepsilon, x_1 + \varepsilon) \times (x_2 - \varepsilon, x_2 + \varepsilon) \times \cdots \times (x_N - \varepsilon, x_N + \varepsilon) \times \mathbb{R} \times \mathbb{R} \times \cdots$$

Then for any $\mathbf{y} \in \mathbb{R}^{\omega}$ we have

$$\frac{\overline{d}(x_i, y_i)}{i} = \frac{\min\{|x_i - y_i|, 1\}}{i} \le \frac{1}{i} \le \frac{1}{N} \text{ for } i \ge N.$$

$$D(\mathbf{x},\mathbf{y}) = \sup_{i \in \mathbb{N}} \left\{ \frac{\overline{d}(x_i,y_i)}{i} \right\} \leq \max \left\{ \frac{\overline{d}(x_1,y_1)}{1}, \frac{\overline{d}(x_2,y_2)}{2}, \dots, \frac{\overline{d}(x_N,y_N)}{N}, \frac{1}{N} \right\}.$$

element V of the product topology such that $V \subset U$. If $\mathbf{y} \in V$ then this maximum is less than ε and so $V \subset B_D(\mathbf{x}, \varepsilon) \subset U$. So for every open set U in the metric topology induced by D, there is a basis

Theorem 20.5 (continued 2)

topology is finer than the metric topology. **Proof (continued).** So by Lemma 13.3 (the $(2)\Rightarrow(1)$ part), the product

 $\mathbf{Y} \in B_D(\mathbf{x}, \varepsilon)$. Then for all $i \in \mathbb{N}$, $i = \alpha_1, \alpha_2, \dots, \alpha_n$. Define $\varepsilon = \min\{\varepsilon_i/i \mid i = \alpha_1.\alpha_2, \dots, \alpha_n\}$. Let $\mathbf{x} \in \mathcal{U}$. Choose ε_i , where $0 < \varepsilon_i \le 1$, such that $(x_i - \varepsilon_i, x_i + \varepsilon_i) \subset \mathcal{U}_i$ for Conversely, let U be a basis element for the product topology. Then by $U_i = \mathbb{R}$ for all i except for finitely many, say $i = \alpha_1, \alpha_2, \dots, \alpha_n$. Let Theorem 19.1, $\mathit{U} = \prod_{i \in \mathbb{N}} \mathit{U}_i$ where each U_i is open in \mathbb{R} for all $i \in \mathbb{N}$ and

$$\frac{\overline{d}(x_i, y_i)}{i} \leq \sup_{i \in \mathbb{N}} \left\{ \frac{\overline{d}(x_i, y_i)}{i} \right\} = D(\mathbf{x}, \mathbf{y}) < \varepsilon.$$

If $i=\alpha_1,\alpha_2,\ldots,\alpha_n$ then $\varepsilon\leq \varepsilon_i/i$ (by the definition of ε), so that $\overline{d}(x_i,y_i)<\varepsilon_i\leq 1$ (by the choice of ε_i). Since $\overline{d}(x_i,y_i)=\min\{|x_i-y_i|,1\}<1$, it must be that $\overline{d}(x_i,y_i)=|x_i-y_i|$ and $B_D(\mathbf{x}, \varepsilon) \subset U$. so $|x_i - y_i| < \varepsilon_i$ for $i = \alpha_1, \alpha_2, \dots, \alpha_n$. Therefore $\mathbf{y} \in \prod_{i \in \mathbb{N}} U_i = U$ and so

Introduction to Topology

Theorem 20.

Theorem 20.5 (continued 3)

Theorem 20.5. Let $\overline{d}(a,b)=\min\{|a-b|,1\}$ be the standard bounded metric on \mathbb{R} . If \mathbf{x} and \mathbf{y} are two points in $\mathbb{R}^{\omega}=\mathbb{R}^{\mathbb{N}}$, define

$$D(\mathbf{x},\mathbf{y}) = \sup_{i \in \mathbb{N}} \left\{ rac{d(x_i,y_i)}{i}
ight\}.$$

Then D is a metric that induces the product topology on \mathbb{R}^{ω} . That is, \mathbb{R}^{ω} under the product topology is metrizable.

Proof. So for every basis element U of the product topology, there is a basis element $V = B_D(\mathbf{x}, \varepsilon)$ of the metric topology such that $V \subset U$. So by Lemma 13.3 (the $(2) \Rightarrow (1)$ part), the metric topology is finer than the product topology. Hence, the metric topology and the product topology are the same. That is, the metric D induces the product topology on \mathbb{R}^{ω} .

() Introduction to Topology July 3, 2016 $14 \, / \, 14$