Introduction to Topology

Chapter 2. Topological Spaces and Continuous Functions Section 20. The Metric Topology—Proofs of Theorems

Theorem 20.1. Let X be a metric space with metric d . Define $\overline{d}: X \times X \to \mathbb{R}$ by $\overline{d}(x, y) = \min\{d(x, y), 1\}$. Then \overline{d} is a metric that induces the same topology as d.

Proof. "Clearly" the first two parts of the definition of metric are satisfied by \overline{d} . The the third part, we need to confirm the Triangle Inequality:

$$
\overline{d}(x,z) \leq \overline{d}(x,y) + \overline{d}(y,z).
$$

We consider two cases.

Theorem 20.1

Theorem 20.1. Let X be a metric space with metric d . Define $\overline{d}: X \times X \to \mathbb{R}$ by $\overline{d}(x, y) = \min\{d(x, y), 1\}$. Then \overline{d} is a metric that induces the same topology as d.

Proof. "Clearly" the first two parts of the definition of metric are satisfied by \overline{d} . The the third part, we need to confirm the Triangle Inequality:

$$
\overline{d}(x,z)\leq \overline{d}(x,y)+\overline{d}(y,z).
$$

We consider two cases.

Case 1. If either $d(x, y) \ge 1$ or $d(y, z) \ge 1$ then the right side of this inequality is at least 1 and so the inequality holds.

Theorem 20.1

Theorem 20.1. Let X be a metric space with metric d . Define $\overline{d}: X \times X \to \mathbb{R}$ by $\overline{d}(x, y) = \min\{d(x, y), 1\}$. Then \overline{d} is a metric that induces the same topology as d .

Proof. "Clearly" the first two parts of the definition of metric are satisfied by \overline{d} . The the third part, we need to confirm the Triangle Inequality:

$$
\overline{d}(x,z)\leq \overline{d}(x,y)+\overline{d}(y,z).
$$

We consider two cases.

Case 1. If either $d(x, y) \ge 1$ or $d(y, z) \ge 1$ then the right side of this inequality is at least 1 and so the inequality holds.

Case 2. If both $d(x, y) < 1$ and $d(y, z) < 1$ then

$$
d(x, z) \leq d(x, y) + d(y, z)
$$
 by the Triangle Inequality for d
= $\overline{d}(x, y) + \overline{d}(y, z)$.

Since $\overline{d}(x, z) < d(x, z)$, we have the Triangle Inequality for \overline{d} . So \overline{d} is in fact a metric.

Theorem 20.1

Theorem 20.1. Let X be a metric space with metric d . Define $\overline{d}: X \times X \to \mathbb{R}$ by $\overline{d}(x, y) = \min\{d(x, y), 1\}$. Then \overline{d} is a metric that induces the same topology as d.

Proof. "Clearly" the first two parts of the definition of metric are satisfied by \overline{d} . The the third part, we need to confirm the Triangle Inequality:

$$
\overline{d}(x,z)\leq \overline{d}(x,y)+\overline{d}(y,z).
$$

We consider two cases.

Case 1. If either $d(x, y) \ge 1$ or $d(y, z) \ge 1$ then the right side of this inequality is at least 1 and so the inequality holds. Case 2. If both $d(x, y) < 1$ and $d(y, z) < 1$ then

$$
d(x, z) \leq d(x, y) + d(y, z)
$$
 by the Triangle Inequality for d
= $\overline{d}(x, y) + \overline{d}(y, z)$.

Since $\overline{d}(x, z) < d(x, z)$, we have the Triangle Inequality for \overline{d} . So \overline{d} is in fact a metric.

Proof (continued). Let β be the basis for the topology induced by d and let \mathcal{B}' be the basis for the topology induced by \overline{d} . By Lemma 13.1, the topology generated by a basis consists of all unions of basis elements. Notice that \mathcal{B}' consists of all ε -balls where $\varepsilon < 1$, so $\mathcal{B}' \subset \mathcal{B}$ and the topology generated by \mathcal{B}' is a subset of the topology generated by $\mathcal{B}.$

Proof (continued). Let β be the basis for the topology induced by d and let \mathcal{B}' be the basis for the topology induced by \overline{d} . By Lemma 13.1, the topology generated by a basis consists of all unions of basis elements. Notice that \mathcal{B}' consists of all $\varepsilon\text{-balls}$ where $\varepsilon < 1$, so $\mathcal{B}' \subset \mathcal{B}$ and the topology generated by \mathcal{B}' is a subset of the topology generated by \mathcal{B} . But for any $B_d(x,\varepsilon) \in \mathcal{B}$ we know that $B_d(x,\varepsilon)$ can be written as a union over all elements of $B_d(x,\varepsilon)$ of balls centered at these elements of $B_d(x,\varepsilon)$ of balls centered at these elements with radius less than 1 (here we use Lemma 20.A):

$$
B_{x}(x,\varepsilon)=\cup_{y\in B_{d}(x,\varepsilon)}B_{d}(y,\delta_{y})
$$

where $\delta_y = \min\{\delta, 1\}$ and $B_d(y, \delta) \subset B_d(x, \varepsilon)$ as in Lemma 20.A.

Proof (continued). Let β be the basis for the topology induced by d and let \mathcal{B}' be the basis for the topology induced by \overline{d} . By Lemma 13.1, the topology generated by a basis consists of all unions of basis elements. Notice that \mathcal{B}' consists of all $\varepsilon\text{-balls}$ where $\varepsilon < 1$, so $\mathcal{B}' \subset \mathcal{B}$ and the topology generated by \mathcal{B}' is a subset of the topology generated by \mathcal{B} . But for any $B_d(x,\varepsilon) \in \mathcal{B}$ we know that $B_d(x,\varepsilon)$ can be written as a union over all elements of $B_d(x,\varepsilon)$ of balls centered at these elements of $B_d(x,\varepsilon)$ of balls centered at these elements with radius less than 1 (here we use Lemma 20.A):

$$
B_{x}(x,\varepsilon)=\cup_{y\in B_{d}(x,\varepsilon)}B_{d}(y,\delta_{y})
$$

where $\delta_y = \min\{\delta, 1\}$ and $B_d(y, \delta) \subset B_d(x, \varepsilon)$ as in Lemma 20.A. So every set in the topology generated by β is also in the topology generated by $\mathcal{B}'.$ So the topologies are the same and d and \overline{d} induce the same topology on X.

Proof (continued). Let β be the basis for the topology induced by d and let \mathcal{B}' be the basis for the topology induced by \overline{d} . By Lemma 13.1, the topology generated by a basis consists of all unions of basis elements. Notice that \mathcal{B}' consists of all $\varepsilon\text{-balls}$ where $\varepsilon < 1$, so $\mathcal{B}' \subset \mathcal{B}$ and the topology generated by \mathcal{B}' is a subset of the topology generated by \mathcal{B} . But for any $B_d(x,\varepsilon) \in \mathcal{B}$ we know that $B_d(x,\varepsilon)$ can be written as a union over all elements of $B_d(x,\varepsilon)$ of balls centered at these elements of $B_d(x,\varepsilon)$ of balls centered at these elements with radius less than 1 (here we use Lemma 20.A):

$$
B_{x}(x,\varepsilon)=\cup_{y\in B_{d}(x,\varepsilon)}B_{d}(y,\delta_{y})
$$

where $\delta_{\mathsf{v}} = \min\{\delta, 1\}$ and $B_d(\mathsf{y}, \delta) \subset B_d(\mathsf{x}, \varepsilon)$ as in Lemma 20.A. So every set in the topology generated by β is also in the topology generated by \mathcal{B}' . So the topologies are the same and d and \overline{d} induce the same topology on X .

Lemma 20.2. Let d and d' be two metrics on the set X . Let T and T' be the topologies they induce, respectively. Then \mathcal{T}' is finer than $\mathcal T$ is and only if for such $x \in X$ and each $\varepsilon > 0$, there exists a $\delta > 0$ such that $B_{d'}(x,\delta) \subset B_d(x,\varepsilon)$.

Proof. Suppose that T' is finer than T . Let $B_d(x, \varepsilon)$ be a basis element for the metric topology T .

l emma 20.2

Lemma 20.2. Let d and d' be two metrics on the set X . Let T and T' be the topologies they induce, respectively. Then \mathcal{T}' is finer than $\mathcal T$ is and only if for such $x \in X$ and each $\varepsilon > 0$, there exists a $\delta > 0$ such that $B_{d'}(x,\delta) \subset B_d(x,\varepsilon)$.

Proof. Suppose that \mathcal{T}' is finer than \mathcal{T} . Let $B_d(x,\varepsilon)$ be a basis element **for the metric topology T**. By Lemma 13.3 (the $(1) \Rightarrow (2)$ part) there is a basis element $\mathcal{B}' \subset B_d(x,\varepsilon)$. By Lemma 20.B, there is $B_{d'}(x,\delta) \subset B' \subset B_d(x,\varepsilon)$ and the first claim holds.

Lemma 20.2. Let d and d' be two metrics on the set X . Let T and T' be the topologies they induce, respectively. Then \mathcal{T}' is finer than $\mathcal T$ is and only if for such $x \in X$ and each $\varepsilon > 0$, there exists a $\delta > 0$ such that $B_{d'}(x,\delta) \subset B_d(x,\varepsilon)$.

Proof. Suppose that \mathcal{T}' is finer than \mathcal{T} . Let $B_d(x,\varepsilon)$ be a basis element for the metric topology T. By Lemma 13.3 (the $(1) \Rightarrow (2)$ part) there is a basis element $\mathcal{B}'\subset B_d(x,\varepsilon)$. By Lemma 20.B, there is $B_{d'}(x,\delta) \subset B' \subset B_d(x,\varepsilon)$ and the first claim holds.

Suppose the δ/ε condition holds. Given a basis element B for the metric topology for T containing x, by Lemma 20.B there is a basis element $B_d(x,\varepsilon)\subset B$.

Lemma 20.2. Let d and d' be two metrics on the set X . Let T and T' be the topologies they induce, respectively. Then \mathcal{T}' is finer than $\mathcal T$ is and only if for such $x \in X$ and each $\varepsilon > 0$, there exists a $\delta > 0$ such that $B_{d'}(x,\delta) \subset B_d(x,\varepsilon)$.

Proof. Suppose that \mathcal{T}' is finer than \mathcal{T} . Let $B_d(x,\varepsilon)$ be a basis element for the metric topology T. By Lemma 13.3 (the $(1) \Rightarrow (2)$ part) there is a basis element $\mathcal{B}'\subset B_d(x,\varepsilon)$. By Lemma 20.B, there is $B_{d'}(x,\delta) \subset B' \subset B_d(x,\varepsilon)$ and the first claim holds.

Suppose the δ/ε condition holds. Given a basis element B for the metric topology for T containing x, by Lemma 20.B there is a basis element $B_d(x,\varepsilon) \subset B$. By the hypothesized δ/ε condition there is $B' = B_{d'}(x, \delta) \subset B_d(x, \varepsilon) \subset B$. By Lemma 13.3 (the $(2) \Rightarrow (1)$ part), T' is finer than \mathcal{T} .

Lemma 20.2. Let d and d' be two metrics on the set X . Let T and T' be the topologies they induce, respectively. Then \mathcal{T}' is finer than $\mathcal T$ is and only if for such $x \in X$ and each $\varepsilon > 0$, there exists a $\delta > 0$ such that $B_{d'}(x,\delta) \subset B_d(x,\varepsilon)$.

Proof. Suppose that \mathcal{T}' is finer than \mathcal{T} . Let $B_d(x,\varepsilon)$ be a basis element for the metric topology T. By Lemma 13.3 (the $(1) \Rightarrow (2)$ part) there is a basis element $\mathcal{B}'\subset B_d(x,\varepsilon)$. By Lemma 20.B, there is $B_{d'}(x,\delta) \subset B' \subset B_d(x,\varepsilon)$ and the first claim holds.

Suppose the δ/ε condition holds. Given a basis element B for the metric topology for T containing x, by Lemma 20.B there is a basis element $B_d(x,\varepsilon) \subset B$. By the hypothesized δ/ε condition there is $B' = B_{d'}(x, \delta) \subset B_d(x, \varepsilon) \subset B$. By Lemma 13.3 (the $(2) \Rightarrow (1)$ part), \mathcal{T}' is finer than \mathcal{T} .

Theorem 20.3. The topologies on \mathbb{R}^n induced by the Euclidean metric d and the square metric ρ are the same as the product topology on \mathbb{R}^n .

Proof. Let $\mathbf{x} = (x_1, x_2, \dots, x_n)$ and $\mathbf{y} = y_1, y_2, \dots, y_n$ be points in \mathbb{R}^n . Then

$$
\rho(\mathbf{x}, \mathbf{y}) = \max_{1 \le i \le n} \{|x_i - y_i|\} \le \left(\sum_{i=1}^n |x_i - y_i|^2\right)^{1/2} = d(\mathbf{x}, \mathbf{y})
$$

$$
\le \left(\sum_{i=1}^n \max_{1 \le i \le n} |x_i - y_i|^2\right)^{1/2} = \left(\sum_{i=1}^n \rho(\mathbf{x}, \mathbf{y})^2\right)^{1/2} = \sqrt{n}\rho(\mathbf{x}, \mathbf{y}). \tag{*}
$$

Theorem 20.3. The topologies on \mathbb{R}^n induced by the Euclidean metric d and the square metric ρ are the same as the product topology on \mathbb{R}^n .

Proof. Let $\mathbf{x} = (x_1, x_2, \dots, x_n)$ and $\mathbf{y} = y_1, y_2, \dots, y_n$ be points in \mathbb{R}^n . Then

$$
\rho(\mathbf{x}, \mathbf{y}) = \max_{1 \leq i \leq n} \{|x_i - y_i|\} \leq \left(\sum_{i=1}^n |x_i - y_i|^2\right)^{1/2} = d(\mathbf{x}, \mathbf{y})
$$

$$
\leq \left(\sum_{i=1}^n \max_{1 \leq i \leq n} |x_i - y_i|^2\right)^{1/2} = \left(\sum_{i=1}^n \rho(\mathbf{x}, \mathbf{y})^2\right)^{1/2} = \sqrt{n}\rho(\mathbf{x}, \mathbf{y}). \quad (*)
$$

 $1/2$

Now for $y \in B_d(x, \varepsilon)$ we have $d(x, y) < \varepsilon$ and so $\rho(x, \varepsilon) < d(x, y) < \varepsilon$ (by (*)) and so $y \in B_0(x,\varepsilon)$. Therefore $B_d(x,\varepsilon) \subset B_0(x,\varepsilon)$ and by Lemma 20.2, the metric topology induced by d is finer than the metric topology induced by ρ .

Theorem 20.3. The topologies on \mathbb{R}^n induced by the Euclidean metric d and the square metric ρ are the same as the product topology on \mathbb{R}^n .

Proof. Let $\mathbf{x} = (x_1, x_2, \dots, x_n)$ and $\mathbf{y} = y_1, y_2, \dots, y_n$ be points in \mathbb{R}^n . Then

$$
\rho(\mathbf{x}, \mathbf{y}) = \max_{1 \le i \le n} \{|x_i - y_i|\} \le \left(\sum_{i=1}^n |x_i - y_i|^2\right)^{1/2} = d(\mathbf{x}, \mathbf{y})
$$

$$
\le \left(\sum_{i=1}^n \max_{1 \le i \le n} |x_i - y_i|^2\right)^{1/2} = \left(\sum_{i=1}^n \rho(\mathbf{x}, \mathbf{y})^2\right)^{1/2} = \sqrt{n}\rho(\mathbf{x}, \mathbf{y}). \quad (*)
$$

 $1/2$

Now for $y \in B_d(x,\varepsilon)$ we have $d(x,y) < \varepsilon$ and so $\rho(x,\varepsilon) < d(x,y) < \varepsilon$ (by (*)) and so $y \in B_o(x,\varepsilon)$. Therefore $B_d(x,\varepsilon) \subset B_o(x,\varepsilon)$ and by Lemma 20.2, the metric topology induced by d is finer than the metric topology induced by ρ . For $y \in B_{\rho}(x, \varepsilon/\sqrt{n})$ we have $\rho(x, y \leq \varepsilon/\sqrt{n})$ and so matted by p. 1 or $y \in D_{\rho}(x, \varepsilon/\sqrt{n})$ we have $\rho(x, y \le \varepsilon/\sqrt{n}$ and s
 $d(x, y) \le \sqrt{n}\rho(x, y) = \sqrt{n}(\varepsilon/\sqrt{n}) = \varepsilon$ (by (*)) and $y \in B_d(x, \varepsilon)$.

Theorem 20.3. The topologies on \mathbb{R}^n induced by the Euclidean metric d and the square metric ρ are the same as the product topology on \mathbb{R}^n .

Proof. Let $\mathbf{x} = (x_1, x_2, \dots, x_n)$ and $\mathbf{y} = y_1, y_2, \dots, y_n$ be points in \mathbb{R}^n . Then

$$
\rho(\mathbf{x}, \mathbf{y}) = \max_{1 \le i \le n} \{|x_i - y_i|\} \le \left(\sum_{i=1}^n |x_i - y_i|^2\right)^{1/2} = d(\mathbf{x}, \mathbf{y})
$$

$$
\le \left(\sum_{i=1}^n \max_{1 \le i \le n} |x_i - y_i|^2\right)^{1/2} = \left(\sum_{i=1}^n \rho(\mathbf{x}, \mathbf{y})^2\right)^{1/2} = \sqrt{n}\rho(\mathbf{x}, \mathbf{y}). \quad (*)
$$

 $1/2$

Now for $y \in B_d(x,\varepsilon)$ we have $d(x,y) < \varepsilon$ and so $\rho(x,\varepsilon) < d(x,y) < \varepsilon$ (by (*)) and so $\mathbf{v} \in B_o(\mathbf{x}, \varepsilon)$. Therefore $B_d(\mathbf{x}, \varepsilon) \subset B_o(\mathbf{x}, \varepsilon)$ and by Lemma 20.2, the metric topology induced by d is finer than the metric topology induced by ρ . For $\mathbf{y} \in B_{\rho}(\mathbf{x}, \varepsilon/\sqrt{n})$ we have $\rho(\mathbf{x}, \mathbf{y} \leq \varepsilon/\sqrt{n})$ and so matted by p. 1 or $\mathbf{y} \in D_{\rho}(\mathbf{x}, \varepsilon/\sqrt{n})$ we have $p(\mathbf{x}, \mathbf{y}) \le \varepsilon/\sqrt{n}$ and s
 $d(\mathbf{x}, \mathbf{y}) \le \sqrt{n} \rho(\mathbf{x}, \mathbf{y}) = \sqrt{n} (\varepsilon/\sqrt{n}) = \varepsilon$ (by (*)) and $\mathbf{y} \in B_d(\mathbf{x}, \varepsilon)$.

Proof (continued). Therefore $B_{\rho}(\mathbf{x}, \varepsilon) \subset B_{d}(\mathbf{x}, \varepsilon)$ and by Lemma 20.2, the metric topology induced by ρ is finer than the metric topology induced by d. Hence, the metric topologies under d and ρ are the same. Now to show that the product topology is the same as the metric topology

induced by ρ. First, let $B = (a_1, b_1) \times (a_2, b_2) \times \cdots \times (a_n, b_n)$ be a basis element for the product topology. Let $\mathbf{x} = (x_1, x_2, \dots, x_n) \in B$.

Proof (continued). Therefore $B_{\rho}(\mathbf{x}, \varepsilon) \subset B_{d}(\mathbf{x}, \varepsilon)$ and by Lemma 20.2, the metric topology induced by ρ is finer than the metric topology induced by d. Hence, the metric topologies under d and ρ are the same. Now to show that the product topology is the same as the metric topology induced by ρ. First, let $B = (a_1, b_1) \times (a_2, b_2) \times \cdots \times (a_n, b_n)$ be a basis element for the product topology. Let $\mathbf{x} = (x_1, x_2, \dots, x_n) \in B$. Then $x_i \in (\mathsf{a}_i, \mathsf{b}_i)$ for each i and so there is $\varepsilon_i > 0$ such that $(x_i-\varepsilon_i,x_i+\varepsilon_i)\subset (a_i,b_i)$ (take, for example, $\varepsilon_i=\min\{x_i-a_i,b_i-x_i\}).$ Set $\varepsilon = \min_{1 \leq i \leq n} {\varepsilon_i}$. Then

 $B_0(x,\varepsilon) \subset (x_1-\varepsilon_1, x_1+\varepsilon_1) \times (x_2-\varepsilon_2, x_2+\varepsilon_2) \times \cdots \times (x_n-\varepsilon_n, x_n+\varepsilon_n) \subset B.$

Proof (continued). Therefore $B_{\rho}(\mathbf{x}, \varepsilon) \subset B_{d}(\mathbf{x}, \varepsilon)$ and by Lemma 20.2, the metric topology induced by ρ is finer than the metric topology induced by d. Hence, the metric topologies under d and ρ are the same. Now to show that the product topology is the same as the metric topology induced by ρ. First, let $B = (a_1, b_1) \times (a_2, b_2) \times \cdots \times (a_n, b_n)$ be a basis element for the product topology. Let $\mathbf{x} = (x_1, x_2, \dots, x_n) \in B$. Then $\mathsf{x}_{i} \in (\mathsf{a}_{i} , b_{i})$ for each i and so there is $\varepsilon_{i} > 0$ such that $(x_i-\varepsilon_i,x_i+\varepsilon_i)\subset (\mathsf{a}_i,\mathsf{b}_i)$ (take, for example, $\varepsilon_i=\mathsf{min}\{x_i-\mathsf{a}_i,\mathsf{b}_i-x_i\}).$ Set $\varepsilon = \min_{1 \leq i \leq n} {\varepsilon_i}$. Then

 $B_0(x,\varepsilon) \subset (x_1-\varepsilon_1,x_1+\varepsilon_1)\times (x_2-\varepsilon_2,x_2+\varepsilon_2)\times \cdots \times (x_n-\varepsilon_n,x_n+\varepsilon_n) \subset B.$

So by Lemma 13.3 (the (2) \Rightarrow (1) part), the metric topology induced by ρ is finer than the product topology.

Proof (continued). Therefore $B_{\rho}(\mathbf{x}, \varepsilon) \subset B_{d}(\mathbf{x}, \varepsilon)$ and by Lemma 20.2, the metric topology induced by ρ is finer than the metric topology induced by d. Hence, the metric topologies under d and ρ are the same. Now to show that the product topology is the same as the metric topology induced by ρ. First, let $B = (a_1, b_1) \times (a_2, b_2) \times \cdots \times (a_n, b_n)$ be a basis element for the product topology. Let $\mathbf{x} = (x_1, x_2, \dots, x_n) \in B$. Then $\mathsf{x}_{i} \in (\mathsf{a}_{i} , b_{i})$ for each i and so there is $\varepsilon_{i} > 0$ such that $(x_i-\varepsilon_i,x_i+\varepsilon_i)\subset (\mathsf{a}_i,\mathsf{b}_i)$ (take, for example, $\varepsilon_i=\mathsf{min}\{x_i-\mathsf{a}_i,\mathsf{b}_i-x_i\}).$ Set $\varepsilon = \min_{1 \leq i \leq n} {\varepsilon_i}$. Then

$$
B_{\rho}(x,\varepsilon)\subset (x_1-\varepsilon_1,x_1+\varepsilon_1)\times (x_2-\varepsilon_2,x_2+\varepsilon_2)\times\cdots\times (x_n-\varepsilon_n,x_n+\varepsilon_n)\subset B.
$$

So by Lemma 13.3 (the (2) \Rightarrow (1) part), the metric topology induced by ρ is finer than the product topology.

Theorem 20.3. The topologies on \mathbb{R}^n induced by the Euclidean metric d and the square metric ρ are the same as the product topology on \mathbb{R}^n .

Proof (continued). Conversely, let $B_{\rho}(\mathbf{x}, \varepsilon)$ be a basis element for the metric topology induced by ρ . Let $y \in B_{\rho}(\mathbf{x}, \varepsilon)$. Let

 $B = B_o(\mathbf{x}, \varepsilon) = (x_1 - \varepsilon_1, x_1 + \varepsilon_1) \times (x_2 - \varepsilon_2, x_2 + \varepsilon_2) \times \cdots \times (x_n - \varepsilon_n, x_n + \varepsilon_n).$

Then $B \subset B_o(\mathbf{x}, \varepsilon)$ and B is a basis element for the product topology.

Theorem 20.3. The topologies on \mathbb{R}^n induced by the Euclidean metric d and the square metric ρ are the same as the product topology on \mathbb{R}^n .

Proof (continued). Conversely, let $B_{\rho}(\mathbf{x}, \varepsilon)$ be a basis element for the metric topology induced by ρ . Let $y \in B_{\rho}(\mathbf{x}, \varepsilon)$. Let

$$
B=B_{\rho}(\mathbf{x},\varepsilon)=(x_1-\varepsilon_1,x_1+\varepsilon_1)\times(x_2-\varepsilon_2,x_2+\varepsilon_2)\times\cdots\times(x_n-\varepsilon_n,x_n+\varepsilon_n).
$$

Then $B \subset B_o(\mathbf{x}, \varepsilon)$ and B is a basis element for the product topology. So by Lemma 13.3 (the $(2) \Rightarrow (1)$ part), the product topology is finer than the metric topology induced by ρ . Therefore the box topology and the metric topology induced by ρ (AND the metric topology induced by d, as shown above) are the same.

Theorem 20.3. The topologies on \mathbb{R}^n induced by the Euclidean metric d and the square metric ρ are the same as the product topology on \mathbb{R}^n .

Proof (continued). Conversely, let $B_{\rho}(\mathbf{x}, \varepsilon)$ be a basis element for the metric topology induced by ρ . Let $y \in B_{\rho}(\mathbf{x}, \varepsilon)$. Let

$$
B=B_{\rho}(\mathbf{x},\varepsilon)=(x_1-\varepsilon_1,x_1+\varepsilon_1)\times(x_2-\varepsilon_2,x_2+\varepsilon_2)\times\cdots\times(x_n-\varepsilon_n,x_n+\varepsilon_n).
$$

Then $B \subset B_o(\mathbf{x}, \varepsilon)$ and B is a basis element for the product topology. So by Lemma 13.3 (the $(2) \Rightarrow (1)$ part), the product topology is finer than the metric topology induced by ρ . Therefore the box topology and the metric topology induced by ρ (AND the metric topology induced by d, as shown above) are the same.

Theorem 20.4. The uniform topology on \mathbb{R}^J is finer than the product topology and coarser than the box topology. These three topologies are all different if J is infinite.

Proof. Let $\mathbf{x} = (x_{\alpha})_{\alpha \in J} \in \mathbb{R}^{J}$ and let *B* be a basis element for the product topology which contains **x**. Then by Theorem 19.1, $B=\prod U_\alpha$ where each U_{α} is open in R and $U_{\alpha} = \mathbb{R}$ for all but finitely many values of α (say $\alpha_1, \alpha_2, \ldots, \alpha_n$).

Theorem 20.4. The uniform topology on \mathbb{R}^J is finer than the product topology and coarser than the box topology. These three topologies are all different if J is infinite.

Proof. Let $\mathbf{x} = (x_{\alpha})_{\alpha \in J} \in \mathbb{R}^{J}$ and let B be a basis element for the product topology which contains **x**. Then by Theorem 19.1, $B=\prod U_\alpha$ where each U_{α} is open in R and $U_{\alpha} = \mathbb{R}$ for all but finitely many values of α (say $\alpha_1, \alpha_2, \ldots, \alpha_n$). For each $i = 1, 2, \ldots, n$, choose $\varepsilon_i > 0$ so that $B_{\overline{d}}(x_i,\varepsilon_i) \subset U_{\alpha_i}$ (which can be done since U_{α} is open in $\mathbb R$ under the standard topology and d and \overline{D} induce the same topology on $\mathbb R$ by Theorem 20.1). Let $\varepsilon = \min\{\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n\}.$

Theorem 20.4. The uniform topology on \mathbb{R}^J is finer than the product topology and coarser than the box topology. These three topologies are all different if J is infinite.

Proof. Let $\mathbf{x} = (x_{\alpha})_{\alpha \in J} \in \mathbb{R}^{J}$ and let B be a basis element for the product topology which contains **x**. Then by Theorem 19.1, $B=\prod U_\alpha$ where each U_{α} is open in R and $U_{\alpha} = \mathbb{R}$ for all but finitely many values of α (say $\alpha_1, \alpha_2, \ldots, \alpha_n$). For each $i = 1, 2, \ldots, n$, choose $\varepsilon_i > 0$ so that $B_{\overline{d}}(x_i,\varepsilon_i)\subset U_{\alpha_i}$ (which can be done since U_α is open in \R under the standard topology and d and \overline{D} induce the same topology on $\mathbb R$ by **Theorem 20.1). Let** $\varepsilon = \mathsf{min}\{\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n\}$ **.** Then $B_{\overline{\rho}}(\mathsf{x}, \varepsilon) \subset \prod U_\alpha$. Since $B_{\overline{\rho}}(\mathbf{x},\varepsilon)$ is a basis element for the metric topology on \mathbb{R}^J induced by metric $\bar{\rho}$ (i.e., the uniform topology). By Lemma 13.3 (the $(2) \Rightarrow (1)$ part), the uniform topology is finer than the product topology.

Theorem 20.4. The uniform topology on \mathbb{R}^J is finer than the product topology and coarser than the box topology. These three topologies are all different if J is infinite.

Proof. Let $\mathbf{x} = (x_{\alpha})_{\alpha \in J} \in \mathbb{R}^{J}$ and let B be a basis element for the product topology which contains **x**. Then by Theorem 19.1, $B=\prod U_\alpha$ where each U_{α} is open in R and $U_{\alpha} = \mathbb{R}$ for all but finitely many values of α (say $\alpha_1, \alpha_2, \ldots, \alpha_n$). For each $i = 1, 2, \ldots, n$, choose $\varepsilon_i > 0$ so that $B_{\overline{d}}(x_i,\varepsilon_i)\subset U_{\alpha_i}$ (which can be done since U_α is open in \R under the standard topology and d and \overline{D} induce the same topology on $\mathbb R$ by Theorem 20.1). Let $\varepsilon=\mathsf{min}\{\varepsilon_1,\varepsilon_2,\ldots,\varepsilon_n\}.$ Then $B_{\overline{\rho}}(\mathbf{x},\varepsilon)\subset\prod U_\alpha.$ Since $B_{\overline{\rho}}({\bf x},\varepsilon)$ is a basis element for the metric topology on \mathbb{R}^J induced by metric $\bar{\rho}$ (i.e., the uniform topology). By Lemma 13.3 (the (2) \Rightarrow (1) part), the uniform topology is finer than the product topology.

Theorem 20.4. The uniform topology on \mathbb{R}^J is finer than the product topology and coarser than the box topology. These three topologies are all different if J is infinite.

Proof (continued). Now let $B = B_{\overline{\rho}}(\mathbf{x}, \varepsilon)$ be a basis element for the uniform topology. Then the open set

$$
U=\prod_{\alpha\in J}(x_{\alpha}-\varepsilon/2,x_{\alpha}+\varepsilon/2)
$$

is a basis element for the box topology and $x \in U \subset B$. So by Lemma 13.3, the box topology is finer than the uniform topology.

The fact that the three topologies are different when J is infinite is left as a homework exercise.

Theorem 20.4. The uniform topology on \mathbb{R}^J is finer than the product topology and coarser than the box topology. These three topologies are all different if J is infinite.

Proof (continued). Now let $B = B_{\overline{\rho}}(\mathbf{x}, \varepsilon)$ be a basis element for the uniform topology. Then the open set

$$
U=\prod_{\alpha\in J}(x_{\alpha}-\varepsilon/2,x_{\alpha}+\varepsilon/2)
$$

is a basis element for the box topology and $x \in U \subset B$. So by Lemma 13.3, the box topology is finer than the uniform topology.

The fact that the three topologies are different when J is infinite is left as a homework exercise.

Theorem 20.5

Theorem 20.5. Let $\overline{d}(a, b) = \min\{|a - b|, 1\}$ be the standard bounded metric on \R . If **x** and **y** are two points in $\R^\omega = \R^{\mathbb{N}}$, define

$$
D(\mathbf{x}, \mathbf{y}) = \sup_{i \in \mathbb{N}} \left\{ \frac{\overline{d}(x_i, y_i)}{i} \right\}.
$$

Then D is a metric that induces the product topology on \mathbb{R}^ω . That is, \mathbb{R}^ω under the product topology is metrizable.

Proof. The first two parts of the definition of metric are clearly satisfied by D. Notice that for all $i \in \mathbb{N}$, by the Triangle Inequality for \overline{d} ,

$$
\frac{\overline{d}(x_i, z_i)}{i} \leq \frac{\overline{d}(x_i, y_i)}{i} + \frac{\overline{d}(y_i, z_i)}{i} \leq D(x, y) + D(y, z).
$$

So

$$
D(\mathbf{x}, \mathbf{z}) = \sup_{i \in \mathbb{N}} \left\{ \frac{\overline{d}(x_i, z_i)}{i} \right\} \leq D(\mathbf{x}, \mathbf{y}) + D(\mathbf{y}, \mathbf{z}),
$$

and the Triangle Inequality holds for D and D is a metric on \mathbb{R}^ω .

Theorem 20.5

Theorem 20.5. Let $\overline{d}(a, b) = \min\{|a - b|, 1\}$ be the standard bounded metric on \R . If **x** and **y** are two points in $\R^\omega = \R^{\mathbb{N}}$, define

$$
D(\mathbf{x}, \mathbf{y}) = \sup_{i \in \mathbb{N}} \left\{ \frac{\overline{d}(x_i, y_i)}{i} \right\}.
$$

Then D is a metric that induces the product topology on \mathbb{R}^ω . That is, \mathbb{R}^ω under the product topology is metrizable.

Proof. The first two parts of the definition of metric are clearly satisfied by D. Notice that for all $i \in \mathbb{N}$, by the Triangle Inequality for \overline{d} ,

$$
\frac{\overline{d}(x_i, z_i)}{i} \leq \frac{\overline{d}(x_i, y_i)}{i} + \frac{\overline{d}(y_i, z_i)}{i} \leq D(\mathbf{x}, \mathbf{y}) + D(\mathbf{y}, \mathbf{z}).
$$

So

$$
D(\mathbf{x},\mathbf{z})=\sup_{i\in\mathbb{N}}\left\{\frac{\overline{d}(x_i,z_i)}{i}\right\}\leq D(\mathbf{x},\mathbf{y})+D(\mathbf{y},\mathbf{z}),
$$

and the Triangle Inequality holds for D and D is a metric on \mathbb{R}^ω .

Proof (continued). Let U be an open set in the metric topology induced by D and let $x \in U$. Choose $\varepsilon > 0$ such that $B_D(x, \varepsilon) \subset U$ and choose $N \in \mathbb{N}$ such that $1/N < \varepsilon$. Let V be the basis element for the product topology

$$
V = (x_1 - \varepsilon, x_1 + \varepsilon) \times (x_2 - \varepsilon, x_2 + \varepsilon) \times \cdots \times (x_N - \varepsilon, x_N + \varepsilon) \times \mathbb{R} \times \mathbb{R} \times \cdots
$$

Then for any $y \in \mathbb{R}^{\omega}$ we have

$$
\frac{\overline{d}(x_i, y_i)}{i} = \frac{\min\{|x_i - y_i|, 1\}}{i} \le \frac{1}{i} \le \frac{1}{N} \text{ for } i \ge N.
$$

Therefore

$$
D(\mathbf{x}, \mathbf{y}) = \sup_{i \in \mathbb{N}} \left\{ \frac{\overline{d}(x_i, y_i)}{i} \right\} \le \max \left\{ \frac{\overline{d}(x_1, y_1)}{1}, \frac{\overline{d}(x_2, y_2)}{2}, \ldots, \frac{\overline{d}(x_N, y_N)}{N}, \frac{1}{N} \right\}
$$

.

Proof (continued). Let U be an open set in the metric topology induced by D and let $x \in U$. Choose $\varepsilon > 0$ such that $B_D(x, \varepsilon) \subset U$ and choose $N \in \mathbb{N}$ such that $1/N < \varepsilon$. Let V be the basis element for the product topology

$$
V = (x_1 - \varepsilon, x_1 + \varepsilon) \times (x_2 - \varepsilon, x_2 + \varepsilon) \times \cdots \times (x_N - \varepsilon, x_N + \varepsilon) \times \mathbb{R} \times \mathbb{R} \times \cdots
$$

Then for any $\mathbf{y} \in \mathbb{R}^\omega$ we have

$$
\frac{\overline{d}(x_i, y_i)}{i} = \frac{\min\{|x_i - y_i|, 1\}}{i} \leq \frac{1}{i} \leq \frac{1}{N} \text{ for } i \geq N.
$$

Therefore

$$
D(\mathbf{x}, \mathbf{y}) = \sup_{i \in \mathbb{N}} \left\{ \frac{\overline{d}(x_i, y_i)}{i} \right\} \le \max \left\{ \frac{\overline{d}(x_1, y_1)}{1}, \frac{\overline{d}(x_2, y_2)}{2}, \dots, \frac{\overline{d}(x_N, y_N)}{N}, \frac{1}{N} \right\}.
$$

If $y \in V$ then this maximum is less than ε and so $V \subset B_D(x, \varepsilon) \subset U$. So for every open set U in the metric topology induced by D, there is a basis element V of the product topology such that $V \subset U$.

Proof (continued). Let U be an open set in the metric topology induced by D and let $x \in U$. Choose $\varepsilon > 0$ such that $B_D(x, \varepsilon) \subset U$ and choose $N \in \mathbb{N}$ such that $1/N < \varepsilon$. Let V be the basis element for the product topology

$$
V = (x_1 - \varepsilon, x_1 + \varepsilon) \times (x_2 - \varepsilon, x_2 + \varepsilon) \times \cdots \times (x_N - \varepsilon, x_N + \varepsilon) \times \mathbb{R} \times \mathbb{R} \times \cdots
$$

Then for any $\mathbf{y} \in \mathbb{R}^\omega$ we have

$$
\frac{\overline{d}(x_i, y_i)}{i} = \frac{\min\{|x_i - y_i|, 1\}}{i} \leq \frac{1}{i} \leq \frac{1}{N} \text{ for } i \geq N.
$$

Therefore

$$
D(\mathbf{x}, \mathbf{y}) = \sup_{i \in \mathbb{N}} \left\{ \frac{\overline{d}(x_i, y_i)}{i} \right\} \le \max \left\{ \frac{\overline{d}(x_1, y_1)}{1}, \frac{\overline{d}(x_2, y_2)}{2}, \dots, \frac{\overline{d}(x_N, y_N)}{N}, \frac{1}{N} \right\}.
$$

If $y \in V$ then this maximum is less than ε and so $V \subset B_D(x,\varepsilon) \subset U$. So for every open set U in the metric topology induced by D, there is a basis element V of the product topology such that $V \subset U$.

Proof (continued). So by Lemma 13.3 (the $(2) \Rightarrow (1)$ part), the product topology is finer than the metric topology.

Conversely, let U be a basis element for the product topology. Then by Theorem 19.1, $U = \prod_{i\in \mathbb{N}} U_i$ where each U_i is open in $\mathbb R$ for all $i\in \mathbb{N}$ and $U_i = \mathbb{R}$ for all *i* except for finitely many, say $i = \alpha_1, \alpha_2, \ldots, \alpha_n$. Let $x \in U$.

Proof (continued). So by Lemma 13.3 (the $(2) \Rightarrow (1)$ part), the product topology is finer than the metric topology. Conversely, let U be a basis element for the product topology. Then by Theorem 19.1, $U=\prod_{i\in \mathbb{N}}U_i$ where each U_i is open in $\mathbb R$ for all $i\in \mathbb{N}$ and $U_i = \mathbb{R}$ for all *i* except for finitely many, say $i = \alpha_1, \alpha_2, \ldots, \alpha_n$. Let $\mathbf{x}\in\pmb{U}.$ Choose $\varepsilon_i,$ where $0<\varepsilon_i\leq 1,$ such that $(x_i-\varepsilon_i,x_i+\varepsilon_i)\subset U_i$ for $i = \alpha_1, \alpha_2, \ldots, \alpha_n$. Define $\varepsilon = \min\{\varepsilon_i / i \mid i = \alpha_1, \alpha_2, \ldots, \alpha_n\}$. Let $\mathsf{Y} \in B_D(\mathsf{x}, \varepsilon)$.

Proof (continued). So by Lemma 13.3 (the $(2) \Rightarrow (1)$ part), the product topology is finer than the metric topology. Conversely, let U be a basis element for the product topology. Then by Theorem 19.1, $U=\prod_{i\in \mathbb{N}}U_i$ where each U_i is open in $\mathbb R$ for all $i\in \mathbb{N}$ and $U_i = \mathbb{R}$ for all *i* except for finitely many, say $i = \alpha_1, \alpha_2, \ldots, \alpha_n$. Let $\mathbf{x}\in U.$ Choose $\varepsilon_i,$ where $0<\varepsilon_i\leq 1,$ such that $(x_i-\varepsilon_i,x_i+\varepsilon_i)\subset U_i$ for $i = \alpha_1, \alpha_2, \ldots, \alpha_n$. Define $\varepsilon = \min\{\varepsilon_i / i \mid i = \alpha_1, \alpha_2, \ldots, \alpha_n\}$. Let $\mathbf{Y} \in B_D(\mathbf{x}, \varepsilon)$. Then for all $i \in \mathbb{N}$,

$$
\frac{\overline{d}(x_i, y_i)}{i} \leq \sup_{i \in \mathbb{N}} \left\{ \frac{\overline{d}(x_i, y_i)}{i} \right\} = D(\mathbf{x}, \mathbf{y}) < \varepsilon.
$$

If $i = \alpha_1, \alpha_2, \ldots, \alpha_n$ then $\varepsilon \leq \varepsilon_i/i$ (by the definition of ε), so that $d(x_i, y_i) < \varepsilon_i \leq 1$ (by the choice of ε_i).

Proof (continued). So by Lemma 13.3 (the $(2) \Rightarrow (1)$ part), the product topology is finer than the metric topology. Conversely, let U be a basis element for the product topology. Then by Theorem 19.1, $U=\prod_{i\in \mathbb{N}}U_i$ where each U_i is open in $\mathbb R$ for all $i\in \mathbb{N}$ and $U_i = \mathbb{R}$ for all *i* except for finitely many, say $i = \alpha_1, \alpha_2, \ldots, \alpha_n$. Let $\mathbf{x}\in U.$ Choose $\varepsilon_i,$ where $0<\varepsilon_i\leq 1,$ such that $(x_i-\varepsilon_i,x_i+\varepsilon_i)\subset U_i$ for $i = \alpha_1, \alpha_2, \ldots, \alpha_n$. Define $\varepsilon = \min\{\varepsilon_i / i \mid i = \alpha_1, \alpha_2, \ldots, \alpha_n\}$. Let $\mathbf{Y} \in B_D(\mathbf{x}, \varepsilon)$. Then for all $i \in \mathbb{N}$,

$$
\frac{\overline{d}(x_i, y_i)}{i} \leq \sup_{i \in \mathbb{N}} \left\{ \frac{\overline{d}(x_i, y_i)}{i} \right\} = D(\mathbf{x}, \mathbf{y}) < \varepsilon.
$$

If $i = \alpha_1, \alpha_2, \ldots, \alpha_n$ then $\varepsilon \leq \varepsilon_i/i$ (by the definition of ε), so that $d(x_i,y_i) < \varepsilon_i \leq 1$ (by the choice of ε_i). Since $d(x_i,y_i) = \mathsf{min}\{|x_i-y_i|,1\} < 1$, it must be that $d(x_i,y_i) = |x_i-y_i|$ and so $|x_i-y_i| < \varepsilon_i$ for $i=\alpha_1,\alpha_2,\ldots,\alpha_n.$ Therefore $\mathbf{y}\in\prod_{i\in\mathbb{N}}U_i=U$ and so $B_D(\mathbf{x}, \varepsilon) \subset U$.

Proof (continued). So by Lemma 13.3 (the $(2) \Rightarrow (1)$ part), the product topology is finer than the metric topology. Conversely, let U be a basis element for the product topology. Then by Theorem 19.1, $U=\prod_{i\in \mathbb{N}}U_i$ where each U_i is open in $\mathbb R$ for all $i\in \mathbb{N}$ and $U_i = \mathbb{R}$ for all *i* except for finitely many, say $i = \alpha_1, \alpha_2, \ldots, \alpha_n$. Let $\mathbf{x}\in U.$ Choose $\varepsilon_i,$ where $0<\varepsilon_i\leq 1,$ such that $(x_i-\varepsilon_i,x_i+\varepsilon_i)\subset U_i$ for $i = \alpha_1, \alpha_2, \ldots, \alpha_n$. Define $\varepsilon = \min\{\varepsilon_i / i \mid i = \alpha_1, \alpha_2, \ldots, \alpha_n\}$. Let $\mathbf{Y} \in B_D(\mathbf{x}, \varepsilon)$. Then for all $i \in \mathbb{N}$,

$$
\frac{\overline{d}(x_i, y_i)}{i} \leq \sup_{i \in \mathbb{N}} \left\{ \frac{\overline{d}(x_i, y_i)}{i} \right\} = D(\mathbf{x}, \mathbf{y}) < \varepsilon.
$$

If $i = \alpha_1, \alpha_2, \ldots, \alpha_n$ then $\varepsilon \leq \varepsilon_i/i$ (by the definition of ε), so that $d(x_i,y_i) < \varepsilon_i \leq 1$ (by the choice of ε_i). Since $d(x_i,y_i) = \mathsf{min}\{|x_i-y_i|,1\} < 1$, it must be that $d(x_i,y_i) = |x_i-y_i|$ and so $|x_i-y_i|<\varepsilon_i$ for $i=\alpha_1,\alpha_2,\ldots,\alpha_n.$ Therefore $\mathbf{y}\in\prod_{i\in\mathbb{N}}U_i=U$ and so $B_D(\mathbf{x}, \varepsilon) \subset U$.

Theorem 20.5. Let $\overline{d}(a, b) = \min\{|a - b|, 1\}$ be the standard bounded metric on \R . If **x** and **y** are two points in $\mathbb{R}^{\omega} = \mathbb{R}^{\mathbb{N}}$, define

$$
D(\mathbf{x}, \mathbf{y}) = \sup_{i \in \mathbb{N}} \left\{ \frac{\overline{d}(x_i, y_i)}{i} \right\}.
$$

Then D is a metric that induces the product topology on \mathbb{R}^ω . That is, \mathbb{R}^ω under the product topology is metrizable.

Proof. So for every basis element U of the product topology, there is a basis element $V = B_D(x, \varepsilon)$ of the metric topology such that $V \subset U$. So by Lemma 13.3 (the $(2) \Rightarrow (1)$ part), the metric topology is finer than the product topology. Hence, the metric topology and the product topology are the same. That is, the metric D induces the product topology on \mathbb{R}^{ω} .

Theorem 20.5. Let $\overline{d}(a, b) = \min\{|a - b|, 1\}$ be the standard bounded metric on \R . If **x** and **y** are two points in $\mathbb{R}^{\omega} = \mathbb{R}^{\mathbb{N}}$, define

$$
D(\mathbf{x}, \mathbf{y}) = \sup_{i \in \mathbb{N}} \left\{ \frac{\overline{d}(x_i, y_i)}{i} \right\}.
$$

Then D is a metric that induces the product topology on \mathbb{R}^ω . That is, \mathbb{R}^ω under the product topology is metrizable.

Proof. So for every basis element U of the product topology, there is a basis element $V = B_D(x, \varepsilon)$ of the metric topology such that $V \subset U$. So by Lemma 13.3 (the $(2) \Rightarrow (1)$ part), the metric topology is finer than the product topology. Hence, the metric topology and the product topology are the same. That is, the metric D induces the product topology on $\mathbb{R}^{\omega}.$