Introduction to Topology

Chapter 2. Topological Spaces and Continuous Functions Section 20. The Metric Topology—Proofs of Theorems

- 2 Lemma 20.2
- 3 Theorem 20.3
- 4 Theorem 20.4

Theorem 20.1. Let X be a metric space with metric d. Define $\overline{d}: X \times X \to \mathbb{R}$ by $\overline{d}(x, y) = \min\{d(x, y), 1\}$. Then \overline{d} is a metric that induces the same topology as d.

Proof. "Clearly" the first two parts of the definition of metric are satisfied by \overline{d} . The the third part, we need to confirm the Triangle Inequality:

$$\overline{d}(x,z) \leq \overline{d}(x,y) + \overline{d}(y,z).$$

We consider two cases.

Theorem 20.1

Theorem 20.1. Let X be a metric space with metric d. Define $\overline{d}: X \times X \to \mathbb{R}$ by $\overline{d}(x, y) = \min\{d(x, y), 1\}$. Then \overline{d} is a metric that induces the same topology as d.

Proof. "Clearly" the first two parts of the definition of metric are satisfied by \overline{d} . The the third part, we need to confirm the Triangle Inequality:

$$\overline{d}(x,z) \leq \overline{d}(x,y) + \overline{d}(y,z).$$

We consider two cases.

<u>Case 1.</u> If either $d(x, y) \ge 1$ or $d(y, z) \ge 1$ then the right side of this inequality is at least 1 and so the inequality holds.

Theorem 20.1

Theorem 20.1. Let X be a metric space with metric d. Define $\overline{d}: X \times X \to \mathbb{R}$ by $\overline{d}(x, y) = \min\{d(x, y), 1\}$. Then \overline{d} is a metric that induces the same topology as d.

Proof. "Clearly" the first two parts of the definition of metric are satisfied by \overline{d} . The the third part, we need to confirm the Triangle Inequality:

$$\overline{d}(x,z) \leq \overline{d}(x,y) + \overline{d}(y,z).$$

We consider two cases.

<u>Case 1.</u> If either $d(x, y) \ge 1$ or $d(y, z) \ge 1$ then the right side of this inequality is at least 1 and so the inequality holds.

<u>Case 2.</u> If both d(x, y) < 1 and d(y, z) < 1 then

 $\begin{aligned} d(x,z) &\leq d(x,y) + d(y,z) \text{ by the Triangle Inequality for } d \\ &= \overline{d}(x,y) + \overline{d}(y,z). \end{aligned}$

Since $\overline{d}(x, z) < d(x, z)$, we have the Triangle Inequality for \overline{d} . So \overline{d} is in fact a metric.

Theorem 20.1

Theorem 20.1. Let X be a metric space with metric d. Define $\overline{d}: X \times X \to \mathbb{R}$ by $\overline{d}(x, y) = \min\{d(x, y), 1\}$. Then \overline{d} is a metric that induces the same topology as d.

Proof. "Clearly" the first two parts of the definition of metric are satisfied by \overline{d} . The the third part, we need to confirm the Triangle Inequality:

$$\overline{d}(x,z) \leq \overline{d}(x,y) + \overline{d}(y,z).$$

We consider two cases.

<u>Case 1.</u> If either $d(x, y) \ge 1$ or $d(y, z) \ge 1$ then the right side of this inequality is at least 1 and so the inequality holds. Case 2. If both d(x, y) < 1 and d(y, z) < 1 then

 $d(x,z) \leq d(x,y) + d(y,z)$ by the Triangle Inequality for $d = \overline{d}(x,y) + \overline{d}(y,z)$.

Since $\overline{d}(x, z) < d(x, z)$, we have the Triangle Inequality for \overline{d} . So \overline{d} is in fact a metric.

Proof (continued). Let \mathcal{B} be the basis for the topology induced by d and let \mathcal{B}' be the basis for the topology induced by \overline{d} . By Lemma 13.1, the topology generated by a basis consists of all unions of basis elements. Notice that \mathcal{B}' consists of all ε -balls where $\varepsilon < 1$, so $\mathcal{B}' \subset \mathcal{B}$ and the topology generated by \mathcal{B}' is a subset of the topology generated by \mathcal{B} .

Proof (continued). Let \mathcal{B} be the basis for the topology induced by d and let \mathcal{B}' be the basis for the topology induced by \overline{d} . By Lemma 13.1, the topology generated by a basis consists of all unions of basis elements. Notice that \mathcal{B}' consists of all ε -balls where $\varepsilon < 1$, so $\mathcal{B}' \subset \mathcal{B}$ and the topology generated by \mathcal{B}' is a subset of the topology generated by \mathcal{B} . But for any $B_d(x,\varepsilon) \in \mathcal{B}$ we know that $B_d(x,\varepsilon)$ can be written as a union over all elements of $B_d(x,\varepsilon)$ of balls centered at these elements of $B_d(x,\varepsilon)$ of balls centered at these elements of $B_d(x,\varepsilon)$ of balls centered at these elements 1 (here we use Lemma 20.A):

$$B_{x}(x,\varepsilon) = \bigcup_{y \in B_{d}(x,\varepsilon)} B_{d}(y,\delta_{y})$$

where $\delta_y = \min{\{\delta, 1\}}$ and $B_d(y, \delta) \subset B_d(x, \varepsilon)$ as in Lemma 20.A.

Proof (continued). Let \mathcal{B} be the basis for the topology induced by d and let \mathcal{B}' be the basis for the topology induced by \overline{d} . By Lemma 13.1, the topology generated by a basis consists of all unions of basis elements. Notice that \mathcal{B}' consists of all ε -balls where $\varepsilon < 1$, so $\mathcal{B}' \subset \mathcal{B}$ and the topology generated by \mathcal{B}' is a subset of the topology generated by \mathcal{B} . But for any $B_d(x,\varepsilon) \in \mathcal{B}$ we know that $B_d(x,\varepsilon)$ can be written as a union over all elements of $B_d(x,\varepsilon)$ of balls centered at these elements of $B_d(x,\varepsilon)$ of balls centered at these elements of $B_d(x,\varepsilon)$ of balls centered at these elements 1 (here we use Lemma 20.A):

$$B_x(x,\varepsilon) = \bigcup_{y \in B_d(x,\varepsilon)} B_d(y,\delta_y)$$

where $\delta_y = \min{\{\delta, 1\}}$ and $B_d(y, \delta) \subset B_d(x, \varepsilon)$ as in Lemma 20.A. So every set in the topology generated by \mathcal{B} is also in the topology generated by \mathcal{B}' . So the topologies are the same and d and \overline{d} induce the same topology on X.

Proof (continued). Let \mathcal{B} be the basis for the topology induced by d and let \mathcal{B}' be the basis for the topology induced by \overline{d} . By Lemma 13.1, the topology generated by a basis consists of all unions of basis elements. Notice that \mathcal{B}' consists of all ε -balls where $\varepsilon < 1$, so $\mathcal{B}' \subset \mathcal{B}$ and the topology generated by \mathcal{B}' is a subset of the topology generated by \mathcal{B} . But for any $B_d(x,\varepsilon) \in \mathcal{B}$ we know that $B_d(x,\varepsilon)$ can be written as a union over all elements of $B_d(x,\varepsilon)$ of balls centered at these elements of $B_d(x,\varepsilon)$ of balls centered at these elements of $B_d(x,\varepsilon)$ of balls centered at these elements 1 (here we use Lemma 20.A):

$$B_{x}(x,\varepsilon) = \cup_{y \in B_{d}(x,\varepsilon)} B_{d}(y,\delta_{y})$$

where $\delta_y = \min{\{\delta, 1\}}$ and $B_d(y, \delta) \subset B_d(x, \varepsilon)$ as in Lemma 20.A. So every set in the topology generated by \mathcal{B} is also in the topology generated by \mathcal{B}' . So the topologies are the same and d and \overline{d} induce the same topology on X.

Lemma 20.2. Let d and d' be two metrics on the set X. Let \mathcal{T} and \mathcal{T}' be the topologies they induce, respectively. Then \mathcal{T}' is finer than \mathcal{T} is and only if for such $x \in X$ and each $\varepsilon > 0$, there exists a $\delta > 0$ such that $B_{d'}(x, \delta) \subset B_d(x, \varepsilon)$.

Proof. Suppose that \mathcal{T}' is finer than \mathcal{T} . Let $B_d(x, \varepsilon)$ be a basis element for the metric topology \mathcal{T} .

Lemma 20.2. Let d and d' be two metrics on the set X. Let \mathcal{T} and \mathcal{T}' be the topologies they induce, respectively. Then \mathcal{T}' is finer than \mathcal{T} is and only if for such $x \in X$ and each $\varepsilon > 0$, there exists a $\delta > 0$ such that $B_{d'}(x, \delta) \subset B_d(x, \varepsilon)$.

Proof. Suppose that \mathcal{T}' is finer than \mathcal{T} . Let $B_d(x,\varepsilon)$ be a basis element for the metric topology \mathcal{T} . By Lemma 13.3 (the $(1)\Rightarrow(2)$ part) there is a basis element $\mathcal{B}' \subset B_d(x,\varepsilon)$. By Lemma 20.B, there is $B_{d'}(x,\delta) \subset B' \subset B_d(x,\varepsilon)$ and the first claim holds.

Lemma 20.2. Let d and d' be two metrics on the set X. Let \mathcal{T} and \mathcal{T}' be the topologies they induce, respectively. Then \mathcal{T}' is finer than \mathcal{T} is and only if for such $x \in X$ and each $\varepsilon > 0$, there exists a $\delta > 0$ such that $B_{d'}(x, \delta) \subset B_d(x, \varepsilon)$.

Proof. Suppose that \mathcal{T}' is finer than \mathcal{T} . Let $B_d(x,\varepsilon)$ be a basis element for the metric topology \mathcal{T} . By Lemma 13.3 (the $(1)\Rightarrow(2)$ part) there is a basis element $\mathcal{B}' \subset B_d(x,\varepsilon)$. By Lemma 20.B, there is $B_{d'}(x,\delta) \subset B' \subset B_d(x,\varepsilon)$ and the first claim holds.

Suppose the δ/ε condition holds. Given a basis element B for the metric topology for \mathcal{T} containing x, by Lemma 20.B there is a basis element $B_d(x,\varepsilon) \subset B$.

Lemma 20.2. Let d and d' be two metrics on the set X. Let \mathcal{T} and \mathcal{T}' be the topologies they induce, respectively. Then \mathcal{T}' is finer than \mathcal{T} is and only if for such $x \in X$ and each $\varepsilon > 0$, there exists a $\delta > 0$ such that $B_{d'}(x, \delta) \subset B_d(x, \varepsilon)$.

Proof. Suppose that \mathcal{T}' is finer than \mathcal{T} . Let $B_d(x,\varepsilon)$ be a basis element for the metric topology \mathcal{T} . By Lemma 13.3 (the $(1)\Rightarrow(2)$ part) there is a basis element $\mathcal{B}' \subset B_d(x,\varepsilon)$. By Lemma 20.B, there is $B_{d'}(x,\delta) \subset B' \subset B_d(x,\varepsilon)$ and the first claim holds.

Suppose the δ/ε condition holds. Given a basis element B for the metric topology for \mathcal{T} containing x, by Lemma 20.B there is a basis element $B_d(x,\varepsilon) \subset B$. By the hypothesized δ/ε condition there is $B' = B_{d'}(x,\delta) \subset B_d(x,\varepsilon) \subset B$. By Lemma 13.3 (the (2) \Rightarrow (1) part), \mathcal{T}' is finer than \mathcal{T} .

Lemma 20.2. Let d and d' be two metrics on the set X. Let \mathcal{T} and \mathcal{T}' be the topologies they induce, respectively. Then \mathcal{T}' is finer than \mathcal{T} is and only if for such $x \in X$ and each $\varepsilon > 0$, there exists a $\delta > 0$ such that $B_{d'}(x, \delta) \subset B_d(x, \varepsilon)$.

Proof. Suppose that \mathcal{T}' is finer than \mathcal{T} . Let $B_d(x,\varepsilon)$ be a basis element for the metric topology \mathcal{T} . By Lemma 13.3 (the $(1)\Rightarrow(2)$ part) there is a basis element $\mathcal{B}' \subset B_d(x,\varepsilon)$. By Lemma 20.B, there is $B_{d'}(x,\delta) \subset B' \subset B_d(x,\varepsilon)$ and the first claim holds.

Suppose the δ/ε condition holds. Given a basis element *B* for the metric topology for \mathcal{T} containing *x*, by Lemma 20.B there is a basis element $B_d(x,\varepsilon) \subset B$. By the hypothesized δ/ε condition there is $B' = B_{d'}(x,\delta) \subset B_d(x,\varepsilon) \subset B$. By Lemma 13.3 (the (2) \Rightarrow (1) part), \mathcal{T}' is finer than \mathcal{T} .

Theorem 20.3. The topologies on \mathbb{R}^n induced by the Euclidean metric d and the square metric ρ are the same as the product topology on \mathbb{R}^n .

Proof. Let $\mathbf{x} = (x_1, x_2, \dots, x_n)$ and $\mathbf{y} = y_1, y_2, \dots, y_n)$ be points in \mathbb{R}^n . Then

$$\rho(\mathbf{x}, \mathbf{y}) = \max_{1 \le i \le n} \{ |x_i - y_i| \} \le \left(\sum_{i=1}^n |x_i - y_i|^2 \right)^{1/2} = d(\mathbf{x}, \mathbf{y})$$
$$\le \left(\sum_{i=1}^n \max_{1 \le i \le n} |x_i - y_i|^2 \right)^{1/2} = \left(\sum_{i=1}^n \rho(\mathbf{x}, \mathbf{y})^2 \right)^{1/2} = \sqrt{n} \rho(\mathbf{x}, \mathbf{y}). \quad (*)$$

Theorem 20.3. The topologies on \mathbb{R}^n induced by the Euclidean metric d and the square metric ρ are the same as the product topology on \mathbb{R}^n .

Proof. Let $\mathbf{x} = (x_1, x_2, \dots, x_n)$ and $\mathbf{y} = y_1, y_2, \dots, y_n)$ be points in \mathbb{R}^n . Then

$$\rho(\mathbf{x}, \mathbf{y}) = \max_{1 \le i \le n} \{ |x_i - y_i| \} \le \left(\sum_{i=1}^n |x_i - y_i|^2 \right)^{1/2} = d(\mathbf{x}, \mathbf{y})$$
$$\le \left(\sum_{i=1}^n \max_{1 \le i \le n} |x_i - y_i|^2 \right)^{1/2} = \left(\sum_{i=1}^n \rho(\mathbf{x}, \mathbf{y})^2 \right)^{1/2} = \sqrt{n}\rho(\mathbf{x}, \mathbf{y}). \quad (*)$$

1 10

Now for $\mathbf{y} \in B_d(\mathbf{x}, \varepsilon)$ we have $d(\mathbf{x}, \mathbf{y}) < \varepsilon$ and so $\rho(\mathbf{x}, \varepsilon) < d(\mathbf{x}, \mathbf{y}) < \varepsilon$ (by (*)) and so $\mathbf{y} \in B_{\rho}(\mathbf{x}, \varepsilon)$. Therefore $B_d(\mathbf{x}, \varepsilon) \subset B_{\rho}(\mathbf{x}, \varepsilon)$ and by Lemma 20.2, the metric topology induced by d is finer than the metric topology induced by ρ .

Theorem 20.3. The topologies on \mathbb{R}^n induced by the Euclidean metric d and the square metric ρ are the same as the product topology on \mathbb{R}^n .

Proof. Let $\mathbf{x} = (x_1, x_2, \dots, x_n)$ and $\mathbf{y} = y_1, y_2, \dots, y_n)$ be points in \mathbb{R}^n . Then

$$\rho(\mathbf{x}, \mathbf{y}) = \max_{1 \le i \le n} \{ |x_i - y_i| \} \le \left(\sum_{i=1}^n |x_i - y_i|^2 \right)^{1/2} = d(\mathbf{x}, \mathbf{y})$$
$$\le \left(\sum_{i=1}^n \max_{1 \le i \le n} |x_i - y_i|^2 \right)^{1/2} = \left(\sum_{i=1}^n \rho(\mathbf{x}, \mathbf{y})^2 \right)^{1/2} = \sqrt{n}\rho(\mathbf{x}, \mathbf{y}). \quad (*)$$

1 /0

Now for $\mathbf{y} \in B_d(\mathbf{x}, \varepsilon)$ we have $d(\mathbf{x}, \mathbf{y}) < \varepsilon$ and so $\rho(\mathbf{x}, \varepsilon) < d(\mathbf{x}, \mathbf{y}) < \varepsilon$ (by (*)) and so $\mathbf{y} \in B_\rho(\mathbf{x}, \varepsilon)$. Therefore $B_d(\mathbf{x}, \varepsilon) \subset B_\rho(\mathbf{x}, \varepsilon)$ and by Lemma 20.2, the metric topology induced by d is finer than the metric topology induced by ρ . For $\mathbf{y} \in B_\rho(\mathbf{x}, \varepsilon/\sqrt{n})$ we have $\rho(\mathbf{x}, \mathbf{y} < \varepsilon/\sqrt{n}$ and so $d(\mathbf{x}, \mathbf{y}) \leq \sqrt{n}\rho(\mathbf{x}, \mathbf{y}) = \sqrt{n}(\varepsilon/\sqrt{n}) = \varepsilon$ (by (*)) and $\mathbf{y} \in B_d(\mathbf{x}, \varepsilon)$.

Theorem 20.3. The topologies on \mathbb{R}^n induced by the Euclidean metric d and the square metric ρ are the same as the product topology on \mathbb{R}^n .

Proof. Let $\mathbf{x} = (x_1, x_2, \dots, x_n)$ and $\mathbf{y} = y_1, y_2, \dots, y_n)$ be points in \mathbb{R}^n . Then

$$\rho(\mathbf{x}, \mathbf{y}) = \max_{1 \le i \le n} \{ |x_i - y_i| \} \le \left(\sum_{i=1}^n |x_i - y_i|^2 \right)^{1/2} = d(\mathbf{x}, \mathbf{y})$$
$$\le \left(\sum_{i=1}^n \max_{1 \le i \le n} |x_i - y_i|^2 \right)^{1/2} = \left(\sum_{i=1}^n \rho(\mathbf{x}, \mathbf{y})^2 \right)^{1/2} = \sqrt{n}\rho(\mathbf{x}, \mathbf{y}). \quad (*)$$

1 /0

Now for $\mathbf{y} \in B_d(\mathbf{x}, \varepsilon)$ we have $d(\mathbf{x}, \mathbf{y}) < \varepsilon$ and so $\rho(\mathbf{x}, \varepsilon) < d(\mathbf{x}, \mathbf{y}) < \varepsilon$ (by (*)) and so $\mathbf{y} \in B_\rho(\mathbf{x}, \varepsilon)$. Therefore $B_d(\mathbf{x}, \varepsilon) \subset B_\rho(\mathbf{x}, \varepsilon)$ and by Lemma 20.2, the metric topology induced by d is finer than the metric topology induced by ρ . For $\mathbf{y} \in B_\rho(\mathbf{x}, \varepsilon/\sqrt{n})$ we have $\rho(\mathbf{x}, \mathbf{y} < \varepsilon/\sqrt{n} \text{ and so } d(\mathbf{x}, \mathbf{y}) \le \sqrt{n}\rho(\mathbf{x}, \mathbf{y}) = \sqrt{n}(\varepsilon/\sqrt{n}) = \varepsilon$ (by (*)) and $\mathbf{y} \in B_d(\mathbf{x}, \varepsilon)$.

Proof (continued). Therefore $B_{\rho}(\mathbf{x}, \varepsilon) \subset B_d(\mathbf{x}, \varepsilon)$ and by Lemma 20.2, the metric topology induced by ρ is finer than the metric topology induced by d. Hence, the metric topologies under d and ρ are the same. Now to show that the product topology is the same as the metric topology induced by ρ . First, let $B = (a_1, b_1) \times (a_2, b_2) \times \cdots \times (a_n, b_n)$ be a basis element for the product topology. Let $\mathbf{x} = (x_1, x_2, \dots, x_n) \in B$.

Proof (continued). Therefore $B_{\rho}(\mathbf{x}, \varepsilon) \subset B_d(\mathbf{x}, \varepsilon)$ and by Lemma 20.2, the metric topology induced by ρ is finer than the metric topology induced by d. Hence, the metric topologies under d and ρ are the same. Now to show that the product topology is the same as the metric topology induced by ρ . First, let $B = (a_1, b_1) \times (a_2, b_2) \times \cdots \times (a_n, b_n)$ be a basis element for the product topology. Let $\mathbf{x} = (x_1, x_2, \dots, x_n) \in B$. Then $x_i \in (a_i, b_i)$ for each i and so there is $\varepsilon_i > 0$ such that $(x_i - \varepsilon_i, x_i + \varepsilon_i) \subset (a_i, b_i)$ (take, for example, $\varepsilon_i = \min\{x_i - a_i, b_i - x_i\}$). Set $\varepsilon = \min_{1 \le i \le n} \{\varepsilon_i\}$. Then

 $B_{\rho}(x,\varepsilon) \subset (x_1 - \varepsilon_1, x_1 + \varepsilon_1) \times (x_2 - \varepsilon_2, x_2 + \varepsilon_2) \times \cdots \times (x_n - \varepsilon_n, x_n + \varepsilon_n) \subset B.$

Proof (continued). Therefore $B_{\rho}(\mathbf{x}, \varepsilon) \subset B_d(\mathbf{x}, \varepsilon)$ and by Lemma 20.2, the metric topology induced by ρ is finer than the metric topology induced by d. Hence, the metric topologies under d and ρ are the same. Now to show that the product topology is the same as the metric topology induced by ρ . First, let $B = (a_1, b_1) \times (a_2, b_2) \times \cdots \times (a_n, b_n)$ be a basis element for the product topology. Let $\mathbf{x} = (x_1, x_2, \dots, x_n) \in B$. Then $x_i \in (a_i, b_i)$ for each i and so there is $\varepsilon_i > 0$ such that $(x_i - \varepsilon_i, x_i + \varepsilon_i) \subset (a_i, b_i)$ (take, for example, $\varepsilon_i = \min\{x_i - a_i, b_i - x_i\}$). Set $\varepsilon = \min_{1 \le i \le n} \{\varepsilon_i\}$. Then

$$B_{\rho}(x,\varepsilon) \subset (x_1 - \varepsilon_1, x_1 + \varepsilon_1) \times (x_2 - \varepsilon_2, x_2 + \varepsilon_2) \times \cdots \times (x_n - \varepsilon_n, x_n + \varepsilon_n) \subset B.$$

So by Lemma 13.3 (the (2) \Rightarrow (1) part), the metric topology induced by ρ is finer than the product topology.

Proof (continued). Therefore $B_{\rho}(\mathbf{x}, \varepsilon) \subset B_d(\mathbf{x}, \varepsilon)$ and by Lemma 20.2, the metric topology induced by ρ is finer than the metric topology induced by d. Hence, the metric topologies under d and ρ are the same. Now to show that the product topology is the same as the metric topology induced by ρ . First, let $B = (a_1, b_1) \times (a_2, b_2) \times \cdots \times (a_n, b_n)$ be a basis element for the product topology. Let $\mathbf{x} = (x_1, x_2, \dots, x_n) \in B$. Then $x_i \in (a_i, b_i)$ for each i and so there is $\varepsilon_i > 0$ such that $(x_i - \varepsilon_i, x_i + \varepsilon_i) \subset (a_i, b_i)$ (take, for example, $\varepsilon_i = \min\{x_i - a_i, b_i - x_i\}$). Set $\varepsilon = \min_{1 \le i \le n} \{\varepsilon_i\}$. Then

$$B_{\rho}(x,\varepsilon) \subset (x_1 - \varepsilon_1, x_1 + \varepsilon_1) \times (x_2 - \varepsilon_2, x_2 + \varepsilon_2) \times \cdots \times (x_n - \varepsilon_n, x_n + \varepsilon_n) \subset B.$$

So by Lemma 13.3 (the (2) \Rightarrow (1) part), the metric topology induced by ρ is finer than the product topology.

Theorem 20.3. The topologies on \mathbb{R}^n induced by the Euclidean metric d and the square metric ρ are the same as the product topology on \mathbb{R}^n .

Proof (continued). Conversely, let $B_{\rho}(\mathbf{x}, \varepsilon)$ be a basis element for the metric topology induced by ρ . Let $\mathbf{y} \in B_{\rho}(\mathbf{x}, \varepsilon)$. Let

 $B = B_{\rho}(\mathbf{x},\varepsilon) = (x_1 - \varepsilon_1, x_1 + \varepsilon_1) \times (x_2 - \varepsilon_2, x_2 + \varepsilon_2) \times \cdots \times (x_n - \varepsilon_n, x_n + \varepsilon_n).$

Then $B \subset B_{\rho}(\mathbf{x}, \varepsilon)$ and B is a basis element for the product topology.

Theorem 20.3. The topologies on \mathbb{R}^n induced by the Euclidean metric d and the square metric ρ are the same as the product topology on \mathbb{R}^n .

Proof (continued). Conversely, let $B_{\rho}(\mathbf{x}, \varepsilon)$ be a basis element for the metric topology induced by ρ . Let $\mathbf{y} \in B_{\rho}(\mathbf{x}, \varepsilon)$. Let

$$B = B_{\rho}(\mathbf{x},\varepsilon) = (x_1 - \varepsilon_1, x_1 + \varepsilon_1) \times (x_2 - \varepsilon_2, x_2 + \varepsilon_2) \times \cdots \times (x_n - \varepsilon_n, x_n + \varepsilon_n).$$

Then $B \subset B_{\rho}(\mathbf{x}, \varepsilon)$ and B is a basis element for the product topology. So by Lemma 13.3 (the $(2) \Rightarrow (1)$ part), the product topology is finer than the metric topology induced by ρ . Therefore the box topology and the metric topology induced by ρ (AND the metric topology induced by d, as shown above) are the same.

Theorem 20.3. The topologies on \mathbb{R}^n induced by the Euclidean metric d and the square metric ρ are the same as the product topology on \mathbb{R}^n .

Proof (continued). Conversely, let $B_{\rho}(\mathbf{x}, \varepsilon)$ be a basis element for the metric topology induced by ρ . Let $\mathbf{y} \in B_{\rho}(\mathbf{x}, \varepsilon)$. Let

$$B = B_{\rho}(\mathbf{x},\varepsilon) = (x_1 - \varepsilon_1, x_1 + \varepsilon_1) \times (x_2 - \varepsilon_2, x_2 + \varepsilon_2) \times \cdots \times (x_n - \varepsilon_n, x_n + \varepsilon_n).$$

Then $B \subset B_{\rho}(\mathbf{x}, \varepsilon)$ and B is a basis element for the product topology. So by Lemma 13.3 (the $(2) \Rightarrow (1)$ part), the product topology is finer than the metric topology induced by ρ . Therefore the box topology and the metric topology induced by ρ (AND the metric topology induced by d, as shown above) are the same.

Theorem 20.4. The uniform topology on \mathbb{R}^J is finer than the product topology and coarser than the box topology. These three topologies are all different if J is infinite.

Proof. Let $\mathbf{x} = (x_{\alpha})_{\alpha \in J} \in \mathbb{R}^{J}$ and let B be a basis element for the product topology which contains \mathbf{x} . Then by Theorem 19.1, $B = \prod U_{\alpha}$ where each U_{α} is open in \mathbb{R} and $U_{\alpha} = \mathbb{R}$ for all but finitely many values of α (say $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$).

Theorem 20.4. The uniform topology on \mathbb{R}^J is finer than the product topology and coarser than the box topology. These three topologies are all different if J is infinite.

Proof. Let $\mathbf{x} = (x_{\alpha})_{\alpha \in J} \in \mathbb{R}^{J}$ and let B be a basis element for the product topology which contains \mathbf{x} . Then by Theorem 19.1, $B = \prod U_{\alpha}$ where each U_{α} is open in \mathbb{R} and $U_{\alpha} = \mathbb{R}$ for all but finitely many values of α (say $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$). For each $i = 1, 2, \ldots, n$, choose $\varepsilon_{i} > 0$ so that $B_{\overline{d}}(x_{i}, \varepsilon_{i}) \subset U_{\alpha_{i}}$ (which can be done since U_{α} is open in \mathbb{R} under the standard topology and d and \overline{D} induce the same topology on \mathbb{R} by Theorem 20.1). Let $\varepsilon = \min{\{\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}\}}$.

Theorem 20.4. The uniform topology on \mathbb{R}^J is finer than the product topology and coarser than the box topology. These three topologies are all different if J is infinite.

Proof. Let $\mathbf{x} = (\mathbf{x}_{\alpha})_{\alpha \in J} \in \mathbb{R}^{J}$ and let B be a basis element for the product topology which contains \mathbf{x} . Then by Theorem 19.1, $B = \prod U_{\alpha}$ where each U_{α} is open in \mathbb{R} and $U_{\alpha} = \mathbb{R}$ for all but finitely many values of α (say $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$). For each $i = 1, 2, \ldots, n$, choose $\varepsilon_{i} > 0$ so that $B_{\overline{d}}(x_{i}, \varepsilon_{i}) \subset U_{\alpha_{i}}$ (which can be done since U_{α} is open in \mathbb{R} under the standard topology and d and \overline{D} induce the same topology on \mathbb{R} by Theorem 20.1). Let $\varepsilon = \min{\{\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}\}}$. Then $B_{\overline{\rho}}(\mathbf{x}, \varepsilon) \subset \prod U_{\alpha}$. Since $B_{\overline{\rho}}(\mathbf{x}, \varepsilon)$ is a basis element for the metric topology on \mathbb{R}^{J} induced by metric $\overline{\rho}$ (i.e., the uniform topology). By Lemma 13.3 (the $(2) \Rightarrow (1)$ part), the uniform topology is finer than the product topology.

Theorem 20.4. The uniform topology on \mathbb{R}^J is finer than the product topology and coarser than the box topology. These three topologies are all different if J is infinite.

Proof. Let $\mathbf{x} = (x_{\alpha})_{\alpha \in J} \in \mathbb{R}^{J}$ and let B be a basis element for the product topology which contains \mathbf{x} . Then by Theorem 19.1, $B = \prod U_{\alpha}$ where each U_{α} is open in \mathbb{R} and $U_{\alpha} = \mathbb{R}$ for all but finitely many values of α (say $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$). For each $i = 1, 2, \ldots, n$, choose $\varepsilon_{i} > 0$ so that $B_{\overline{d}}(x_{i}, \varepsilon_{i}) \subset U_{\alpha_{i}}$ (which can be done since U_{α} is open in \mathbb{R} under the standard topology and d and \overline{D} induce the same topology on \mathbb{R} by Theorem 20.1). Let $\varepsilon = \min\{\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}\}$. Then $B_{\overline{\rho}}(\mathbf{x}, \varepsilon) \subset \prod U_{\alpha}$. Since $B_{\overline{\rho}}(\mathbf{x}, \varepsilon)$ is a basis element for the metric topology on \mathbb{R}^{J} induced by metric $\overline{\rho}$ (i.e., the uniform topology). By Lemma 13.3 (the $(2) \Rightarrow (1)$ part), the uniform topology is finer than the product topology.

Theorem 20.4. The uniform topology on \mathbb{R}^J is finer than the product topology and coarser than the box topology. These three topologies are all different if J is infinite.

Proof (continued). Now let $B = B_{\overline{\rho}}(\mathbf{x}, \varepsilon)$ be a basis element for the uniform topology. Then the open set

$$U = \prod_{\alpha \in J} (x_{\alpha} - \varepsilon/2, x_{\alpha} + \varepsilon/2)$$

is a basis element for the box topology and $\mathbf{x} \in U \subset B$. So by Lemma 13.3, the box topology is finer than the uniform topology.

The fact that the three topologies are different when J is infinite is left as a homework exercise.

Theorem 20.4. The uniform topology on \mathbb{R}^J is finer than the product topology and coarser than the box topology. These three topologies are all different if J is infinite.

Proof (continued). Now let $B = B_{\overline{\rho}}(\mathbf{x}, \varepsilon)$ be a basis element for the uniform topology. Then the open set

$$U = \prod_{\alpha \in J} (x_{\alpha} - \varepsilon/2, x_{\alpha} + \varepsilon/2)$$

is a basis element for the box topology and $\mathbf{x} \in U \subset B$. So by Lemma 13.3, the box topology is finer than the uniform topology.

The fact that the three topologies are different when J is infinite is left as a homework exercise.

Theorem 20.5

Theorem 20.5. Let $\overline{d}(a, b) = \min\{|a - b|, 1\}$ be the standard bounded metric on \mathbb{R} . If **x** and **y** are two points in $\mathbb{R}^{\omega} = \mathbb{R}^{\mathbb{N}}$, define

$$D(\mathbf{x},\mathbf{y}) = \sup_{i\in\mathbb{N}} \left\{ rac{\overline{d}(x_i,y_i)}{i}
ight\}.$$

Then D is a metric that induces the product topology on \mathbb{R}^{ω} . That is, \mathbb{R}^{ω} under the product topology is metrizable.

Proof. The first two parts of the definition of metric are clearly satisfied by D. Notice that for all $i \in \mathbb{N}$, by the Triangle Inequality for \overline{d} ,

$$\frac{\overline{d}(x_i, z_i)}{i} \leq \frac{\overline{d}(x_i, y_i)}{i} + \frac{\overline{d}(y_i, z_i)}{i} \leq D(\mathbf{x}, \mathbf{y}) + D(\mathbf{y}, \mathbf{z}).$$

So

$$D(\mathbf{x},\mathbf{z}) = \sup_{i\in\mathbb{N}}\left\{\frac{\overline{d}(x_i,z_i)}{i}\right\} \leq D(\mathbf{x},\mathbf{y}) + D(\mathbf{y},\mathbf{z}),$$

and the Triangle Inequality holds for D and D is a metric on \mathbb{R}^{ω} .

Theorem 20.5

Theorem 20.5. Let $\overline{d}(a, b) = \min\{|a - b|, 1\}$ be the standard bounded metric on \mathbb{R} . If **x** and **y** are two points in $\mathbb{R}^{\omega} = \mathbb{R}^{\mathbb{N}}$, define

$$D(\mathbf{x},\mathbf{y}) = \sup_{i\in\mathbb{N}} \left\{ rac{\overline{d}(x_i,y_i)}{i}
ight\}.$$

Then D is a metric that induces the product topology on \mathbb{R}^{ω} . That is, \mathbb{R}^{ω} under the product topology is metrizable.

Proof. The first two parts of the definition of metric are clearly satisfied by D. Notice that for all $i \in \mathbb{N}$, by the Triangle Inequality for \overline{d} ,

$$\frac{\overline{d}(x_i, z_i)}{i} \leq \frac{\overline{d}(x_i, y_i)}{i} + \frac{\overline{d}(y_i, z_i)}{i} \leq D(\mathbf{x}, \mathbf{y}) + D(\mathbf{y}, \mathbf{z}).$$

So

$$D(\mathbf{x}, \mathbf{z}) = \sup_{i \in \mathbb{N}} \left\{ \frac{\overline{d}(x_i, z_i)}{i} \right\} \le D(\mathbf{x}, \mathbf{y}) + D(\mathbf{y}, \mathbf{z}),$$

and the Triangle Inequality holds for D and D is a metric on \mathbb{R}^{ω} .

Proof (continued). Let U be an open set in the metric topology induced by D and let $\mathbf{x} \in U$. Choose $\varepsilon > 0$ such that $B_D(\mathbf{x}, \varepsilon) \subset U$ and choose $N \in \mathbb{N}$ such that $1/N < \varepsilon$. Let V be the basis element for the product topology

$$V = (x_1 - \varepsilon, x_1 + \varepsilon) \times (x_2 - \varepsilon, x_2 + \varepsilon) \times \cdots \times (x_N - \varepsilon, x_N + \varepsilon) \times \mathbb{R} \times \mathbb{R} \times \cdots$$

Then for any $\mathbf{y} \in \mathbb{R}^{\omega}$ we have

$$\frac{\overline{d}(x_i, y_i)}{i} = \frac{\min\{|x_i - y_i|, 1\}}{i} \le \frac{1}{i} \le \frac{1}{N} \text{ for } i \ge N.$$

Therefore

$$D(\mathbf{x},\mathbf{y}) = \sup_{i \in \mathbb{N}} \left\{ \frac{\overline{d}(x_i, y_i)}{i} \right\} \le \max\left\{ \frac{\overline{d}(x_1, y_1)}{1}, \frac{\overline{d}(x_2, y_2)}{2}, \dots, \frac{\overline{d}(x_N, y_N)}{N}, \frac{1}{N} \right\}$$

Proof (continued). Let U be an open set in the metric topology induced by D and let $\mathbf{x} \in U$. Choose $\varepsilon > 0$ such that $B_D(\mathbf{x}, \varepsilon) \subset U$ and choose $N \in \mathbb{N}$ such that $1/N < \varepsilon$. Let V be the basis element for the product topology

$$V = (x_1 - \varepsilon, x_1 + \varepsilon) \times (x_2 - \varepsilon, x_2 + \varepsilon) \times \cdots \times (x_N - \varepsilon, x_N + \varepsilon) \times \mathbb{R} \times \mathbb{R} \times \cdots$$

Then for any $\mathbf{y} \in \mathbb{R}^{\omega}$ we have

$$\frac{\overline{d}(x_i, y_i)}{i} = \frac{\min\{|x_i - y_i|, 1\}}{i} \le \frac{1}{i} \le \frac{1}{N} \text{ for } i \ge N.$$

Therefore

$$D(\mathbf{x},\mathbf{y}) = \sup_{i \in \mathbb{N}} \left\{ \frac{\overline{d}(x_i, y_i)}{i} \right\} \le \max \left\{ \frac{\overline{d}(x_1, y_1)}{1}, \frac{\overline{d}(x_2, y_2)}{2}, \dots, \frac{\overline{d}(x_N, y_N)}{N}, \frac{1}{N} \right\}$$

If $\mathbf{y} \in V$ then this maximum is less than ε and so $V \subset B_D(\mathbf{x}, \varepsilon) \subset U$. So for every open set U in the metric topology induced by D, there is a basis element V of the product topology such that $V \subset U$.

Proof (continued). Let U be an open set in the metric topology induced by D and let $\mathbf{x} \in U$. Choose $\varepsilon > 0$ such that $B_D(\mathbf{x}, \varepsilon) \subset U$ and choose $N \in \mathbb{N}$ such that $1/N < \varepsilon$. Let V be the basis element for the product topology

$$V = (x_1 - \varepsilon, x_1 + \varepsilon) \times (x_2 - \varepsilon, x_2 + \varepsilon) \times \cdots \times (x_N - \varepsilon, x_N + \varepsilon) \times \mathbb{R} \times \mathbb{R} \times \cdots$$

Then for any $\mathbf{y} \in \mathbb{R}^{\omega}$ we have

$$\frac{\overline{d}(x_i, y_i)}{i} = \frac{\min\{|x_i - y_i|, 1\}}{i} \le \frac{1}{i} \le \frac{1}{N} \text{ for } i \ge N.$$

Therefore

$$D(\mathbf{x},\mathbf{y}) = \sup_{i \in \mathbb{N}} \left\{ \frac{\overline{d}(x_i, y_i)}{i} \right\} \le \max \left\{ \frac{\overline{d}(x_1, y_1)}{1}, \frac{\overline{d}(x_2, y_2)}{2}, \dots, \frac{\overline{d}(x_N, y_N)}{N}, \frac{1}{N} \right\}$$

If $\mathbf{y} \in V$ then this maximum is less than ε and so $V \subset B_D(\mathbf{x}, \varepsilon) \subset U$. So for every open set U in the metric topology induced by D, there is a basis element V of the product topology such that $V \subset U$.

Proof (continued). So by Lemma 13.3 (the $(2) \Rightarrow (1)$ part), the product topology is finer than the metric topology.

Conversely, let U be a basis element for the product topology. Then by Theorem 19.1, $U = \prod_{i \in \mathbb{N}} U_i$ where each U_i is open in \mathbb{R} for all $i \in \mathbb{N}$ and $U_i = \mathbb{R}$ for all i except for finitely many, say $i = \alpha_1, \alpha_2, \ldots, \alpha_n$. Let $\mathbf{x} \in U$.

Proof (continued). So by Lemma 13.3 (the $(2) \Rightarrow (1)$ part), the product topology is finer than the metric topology. Conversely, let U be a basis element for the product topology. Then by Theorem 19.1, $U = \prod_{i \in \mathbb{N}} U_i$ where each U_i is open in \mathbb{R} for all $i \in \mathbb{N}$ and $U_i = \mathbb{R}$ for all i except for finitely many, say $i = \alpha_1, \alpha_2, \ldots, \alpha_n$. Let $\mathbf{x} \in U$. Choose ε_i , where $0 < \varepsilon_i \leq 1$, such that $(x_i - \varepsilon_i, x_i + \varepsilon_i) \subset U_i$ for $i = \alpha_1, \alpha_2, \ldots, \alpha_n$. Define $\varepsilon = \min{\{\varepsilon_i/i \mid i = \alpha_1.\alpha_2, \ldots, \alpha_n\}}$. Let $\mathbf{Y} \in B_D(\mathbf{x}, \varepsilon)$.

Proof (continued). So by Lemma 13.3 (the $(2) \Rightarrow (1)$ part), the product topology is finer than the metric topology. Conversely, let U be a basis element for the product topology. Then by Theorem 19.1, $U = \prod_{i \in \mathbb{N}} U_i$ where each U_i is open in \mathbb{R} for all $i \in \mathbb{N}$ and $U_i = \mathbb{R}$ for all i except for finitely many, say $i = \alpha_1, \alpha_2, \ldots, \alpha_n$. Let $\mathbf{x} \in U$. Choose ε_i , where $0 < \varepsilon_i \leq 1$, such that $(x_i - \varepsilon_i, x_i + \varepsilon_i) \subset U_i$ for $i = \alpha_1, \alpha_2, \ldots, \alpha_n$. Define $\varepsilon = \min\{\varepsilon_i/i \mid i = \alpha_1.\alpha_2, \ldots, \alpha_n\}$. Let $\mathbf{Y} \in B_D(\mathbf{x}, \varepsilon)$. Then for all $i \in \mathbb{N}$,

$$\frac{\overline{d}(x_i, y_i)}{i} \leq \sup_{i \in \mathbb{N}} \left\{ \frac{\overline{d}(x_i, y_i)}{i} \right\} = D(\mathbf{x}, \mathbf{y}) < \varepsilon.$$

If $i = \alpha_1, \alpha_2, \dots, \alpha_n$ then $\varepsilon \le \varepsilon_i / i$ (by the definition of ε), so that $\overline{d}(x_i, y_i) < \varepsilon_i \le 1$ (by the choice of ε_i).

Proof (continued). So by Lemma 13.3 (the $(2) \Rightarrow (1)$ part), the product topology is finer than the metric topology. Conversely, let U be a basis element for the product topology. Then by Theorem 19.1, $U = \prod_{i \in \mathbb{N}} U_i$ where each U_i is open in \mathbb{R} for all $i \in \mathbb{N}$ and $U_i = \mathbb{R}$ for all i except for finitely many, say $i = \alpha_1, \alpha_2, \ldots, \alpha_n$. Let $\mathbf{x} \in U$. Choose ε_i , where $0 < \varepsilon_i \leq 1$, such that $(\mathbf{x}_i - \varepsilon_i, \mathbf{x}_i + \varepsilon_i) \subset U_i$ for $i = \alpha_1, \alpha_2, \ldots, \alpha_n$. Define $\varepsilon = \min\{\varepsilon_i/i \mid i = \alpha_1.\alpha_2, \ldots, \alpha_n\}$. Let $\mathbf{Y} \in B_D(\mathbf{x}, \varepsilon)$. Then for all $i \in \mathbb{N}$,

$$\frac{\overline{d}(x_i, y_i)}{i} \leq \sup_{i \in \mathbb{N}} \left\{ \frac{\overline{d}(x_i, y_i)}{i} \right\} = D(\mathbf{x}, \mathbf{y}) < \varepsilon.$$

If $i = \alpha_1, \alpha_2, \ldots, \alpha_n$ then $\varepsilon \leq \varepsilon_i/i$ (by the definition of ε), so that $\overline{d}(x_i, y_i) < \varepsilon_i \leq 1$ (by the choice of ε_i). Since $\overline{d}(x_i, y_i) = \min\{|x_i - y_i|, 1\} < 1$, it must be that $\overline{d}(x_i, y_i) = |x_i - y_i|$ and so $|x_i - y_i| < \varepsilon_i$ for $i = \alpha_1, \alpha_2, \ldots, \alpha_n$. Therefore $\mathbf{y} \in \prod_{i \in \mathbb{N}} U_i = U$ and so $B_D(\mathbf{x}, \varepsilon) \subset U$.

Proof (continued). So by Lemma 13.3 (the $(2) \Rightarrow (1)$ part), the product topology is finer than the metric topology. Conversely, let U be a basis element for the product topology. Then by Theorem 19.1, $U = \prod_{i \in \mathbb{N}} U_i$ where each U_i is open in \mathbb{R} for all $i \in \mathbb{N}$ and $U_i = \mathbb{R}$ for all i except for finitely many, say $i = \alpha_1, \alpha_2, \ldots, \alpha_n$. Let $\mathbf{x} \in U$. Choose ε_i , where $0 < \varepsilon_i \leq 1$, such that $(\mathbf{x}_i - \varepsilon_i, \mathbf{x}_i + \varepsilon_i) \subset U_i$ for $i = \alpha_1, \alpha_2, \ldots, \alpha_n$. Define $\varepsilon = \min\{\varepsilon_i/i \mid i = \alpha_1.\alpha_2, \ldots, \alpha_n\}$. Let $\mathbf{Y} \in B_D(\mathbf{x}, \varepsilon)$. Then for all $i \in \mathbb{N}$,

$$\frac{\overline{d}(x_i, y_i)}{i} \leq \sup_{i \in \mathbb{N}} \left\{ \frac{\overline{d}(x_i, y_i)}{i} \right\} = D(\mathbf{x}, \mathbf{y}) < \varepsilon.$$

If $i = \alpha_1, \alpha_2, \ldots, \alpha_n$ then $\varepsilon \le \varepsilon_i/i$ (by the definition of ε), so that $\overline{d}(x_i, y_i) < \varepsilon_i \le 1$ (by the choice of ε_i). Since $\overline{d}(x_i, y_i) = \min\{|x_i - y_i|, 1\} < 1$, it must be that $\overline{d}(x_i, y_i) = |x_i - y_i|$ and so $|x_i - y_i| < \varepsilon_i$ for $i = \alpha_1, \alpha_2, \ldots, \alpha_n$. Therefore $\mathbf{y} \in \prod_{i \in \mathbb{N}} U_i = U$ and so $B_D(\mathbf{x}, \varepsilon) \subset U$.

Theorem 20.5. Let $\overline{d}(a, b) = \min\{|a - b|, 1\}$ be the standard bounded metric on \mathbb{R} . If **x** and **y** are two points in $\mathbb{R}^{\omega} = \mathbb{R}^{\mathbb{N}}$, define

$$D(\mathbf{x},\mathbf{y}) = \sup_{i\in\mathbb{N}} \left\{ rac{\overline{d}(x_i,y_i)}{i}
ight\}.$$

Then D is a metric that induces the product topology on \mathbb{R}^{ω} . That is, \mathbb{R}^{ω} under the product topology is metrizable.

Proof. So for every basis element U of the product topology, there is a basis element $V = B_D(\mathbf{x}, \varepsilon)$ of the metric topology such that $V \subset U$. So by Lemma 13.3 (the (2) \Rightarrow (1) part), the metric topology is finer than the product topology. Hence, the metric topology and the product topology are the same. That is, the metric D induces the product topology on \mathbb{R}^{ω} .

Theorem 20.5. Let $\overline{d}(a, b) = \min\{|a - b|, 1\}$ be the standard bounded metric on \mathbb{R} . If **x** and **y** are two points in $\mathbb{R}^{\omega} = \mathbb{R}^{\mathbb{N}}$, define

$$D(\mathbf{x},\mathbf{y}) = \sup_{i\in\mathbb{N}} \left\{ rac{\overline{d}(x_i,y_i)}{i}
ight\}.$$

Then D is a metric that induces the product topology on \mathbb{R}^{ω} . That is, \mathbb{R}^{ω} under the product topology is metrizable.

Proof. So for every basis element U of the product topology, there is a basis element $V = B_D(\mathbf{x}, \varepsilon)$ of the metric topology such that $V \subset U$. So by Lemma 13.3 (the (2) \Rightarrow (1) part), the metric topology is finer than the product topology. Hence, the metric topology and the product topology are the same. That is, the metric D induces the product topology on \mathbb{R}^{ω} .