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Theorem 21.1

Theorem 21.1

Theorem 21.1. Let f : X → Y . let X and Y be metrizable with metrics
dX and dY , respectively. Then continuity of f is equivalent to the
requirement that given x ∈ X and given ε > 0, there exists δ > 0 such that

dX (x , y) < δ ⇒ dY (f (x), f (y)) < ε.

Proof. Suppose f is continuous. Let x ∈ X and ε > 0 be given. Consider
the set f −1(B(f (x), ε).

Since f is continuous then by definition of
continuity, f −1(B(f (x), ε)) is open in X since B(f (x), ε) is open an
dx ∈ f −1(B(f (x), ε)) then by Lemma 20.A there is δ > 0 such that
B(x , δ) ⊂ f −1(B(f (x), ε)). Then dX (x , y) < δ implies y ∈ B(f (x), δ), so
f (y) ∈ B(f (x), ε) and dY (f (x), f (y)) < ε.
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Theorem 21.1

Theorem 21.1 (continued)

Theorem 21.1. Let f : X → Y . let X and Y be metrizable with metrics
dX and dY , respectively. Then continuity of f is equivalent to the
requirement that given x ∈ X and given ε > 0, there exists δ > 0 such that

dX (x , y) < δ ⇒ dY (f (x), f (y)) < ε.

Proof (continued). Conversely suppose that the ε/δ condition is
satisfied. Let V be an open set in Y . Let x ∈ f −1(V ). Then f (x) ∈ V .

Since V is open an df (x) ∈ V then by Lemma 20.B there is ε > 0 such
that B(f (x), ε) ⊂ V . By the ε/δ hypothesis, there is δ > 0 such that
dX (x , y) < δ implies dY (f (x), f (y)) < ε (i.e., f (y) ∈ B(f (x), ε)). So
f (B(x , δ)) ⊂ B(f (x), ε). So x ∈ B(x , δ) ⊂ f −1(B(f (x), ε) ⊂ V .
Therefore, by Lemma 20.B, f −1(V ) is open and so f is continuous.
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Lemma 21.2. The Sequence Lemma

Lemma 21.2

Lemma 21.2. The Sequence Lemma.
Let X be a topological space. Let A ⊂ X . If there is a sequence of points
of A converging to x , then x ∈ A. If X is metrizable and x ∈ A then there
is a sequence {xn} ⊂ A such that {xn} → x .

Proof. Suppose that {xn} → x where {xn} ⊂ A. Then any given
neighborhood U of x , there is, by the definition of limit of a sequence (see
Section 17) N ∈ N such that xn ∈ U for all n ≥ N.

So every neighborhood
of x contains an element of the sequence and hence an element of set A.
Then by Theorem 17.5 (part (a)), x ∈ A.
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Lemma 21.2. The Sequence Lemma

Lemma 21.2 (continued)

Lemma 21.2. The Sequence Lemma.
Let X be a topological space. Let A ⊂ X . If there is a sequence of points
of A converging to x , then x ∈ A. If X is metrizable and x ∈ A then there
is a sequence {xn} ⊂ A such that {xn} → x .

Proof (continued). Conversely, suppose that X is metrizable and x ∈ A.
Let d be a metric for the topology of X . For each n ∈ N, consider
Bd(x , 1/n). This is an open set containing x and so by Theorem 17.5
(part (a)), B(x , 1/n) contains an element of A, say xn. Then consider the
resulting sequence {xn}.

Any open set U which contains x contains, for
some ε > 0, Bd(x , ε), Bd(x , ε) ⊂ U, by Lemma 20.B. Since ε > 0, then
for some N ∈ N we have 1/N < ε. So by construction of the sequence, for
all n ≥ N we have sn ∈ B(x , 1/n) ⊂ B(x , 1/N) ⊂ B(x , ε) ⊂ U. So
{xn} → x by the definition of convergent sequence.
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Theorem 21.3

Theorem 21.3

Theorem 21.3. Let f : X → Y . If f is continuous then for every
convergent sequence {xn} → x in X , the sequence {f (xn)} → f (x) in Y .
If X is metrizable and for any sequence {xn} → x in X we have
{f (xn)} → f (x) in Y , then f is continuous.

Proof. Suppose f is continuous and let {xn} → x in X . Let V be a
neighborhood of f (x). Then f −1(V ) is open and contains x .

Since
{xn} → x , by the definition of convergent sequence (see Section 17), there
is N ∈ N such that for all n ≥ N we have xn ∈ f −1(V ). Then f (xn) ∈ V
for all n ≥ N and so (by definition again) {f (xn)} → f (x).
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Theorem 21.3

Theorem 21.3 (continued)

Theorem 21.3. Let f : X → Y . If f is continuous then for every
convergent sequence {xn} → x in X , the sequence {f (xn)} → f (x) in Y .
If X is metrizable and for any sequence {xn} → x in X we have
{f (xn)} → f (x) in Y , then f is continuous.

Proof (continued). Conversely, suppose X is metrizable and suppose for
any x ∈ X and any sequence {xn} → x in X we have {f (xn)} → f (x). Let
A ⊂ X . If x ∈ A then there is a sequence {xn} ⊂ A such that {xn} → x by
Lemma 21.2 (part 2). By hypothesis, {f (xn)} → f (x). Since {xn} ⊂ A
then f (xn) ∈ f (A) by Lemma 21.2 (part 1; notice that this does not
require the metrizability of Y ).

Since x ∈ A is arbitrary, then f (A) ⊂ f (A).
Hence, by Theorem 18.1 (the (2)⇒(1) part), f is continuous.
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Theorem 21.5

Theorem 21.5. If X is a topological space and if f , g : X → R are
continuous, then f + g , f − g , and f · g are continuous. If g(x) 6= 0 for all
x ∈ X then f /g is continuous.

Proof. The map h : X → R× R defined by h(x) = (f (x), g(x)) is
continuous by Theorem 18.4 (“Maps Into Products”). The function f + g
equals the composition of h and the addition operation + : R× R → R.
Therefore f + g is continuous by Theorem 18.2 part (c).

Similarly, f − g is the composition of h and the subtraction operation
− : R× R → R, f · g is the composition of h and the multiplication
operation · : R×R → R, and f /g is the composition of h and the division
operation ÷ : R× (R \ {0}) → R. So each of these is also continuous.
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Theorem 21.6. Uniform Limit Theorem

Theorem 21.6

Theorem 21.6. Uniform Limit Theorem.
Let fn : X → Y be a sequence of continuous functions from the
topological space X to the metric space Y . If {fn} converges uniformly to
f , then f is continuous.

Proof. Let V be open in Y and let x0 ∈ f −1(V ).

Let y0 = f (x0) ∈ V and
choose ε > 0 such that B(y0, ε) ⊂ V (by Lemmma 20.B). Since {fn}
converges uniformly to f on X then there is N ∈ N such that for all n ≥ N
and for all x ∈ X we have

(fn(x), f (x)) < ε/3. (∗)

Since fN is continuous, there is a neighborhood U of x0 such that

fN(U) ⊂ B(fN(x0), ε/3) (∗∗)

by Theorem 18.1 (the (1)⇒(4) part where B(fN(x0), ε/3) is treated as a
neighborhood of f (x0)).

() Introduction to Topology July 13, 2016 10 / 11



Theorem 21.6. Uniform Limit Theorem

Theorem 21.6

Theorem 21.6. Uniform Limit Theorem.
Let fn : X → Y be a sequence of continuous functions from the
topological space X to the metric space Y . If {fn} converges uniformly to
f , then f is continuous.

Proof. Let V be open in Y and let x0 ∈ f −1(V ). Let y0 = f (x0) ∈ V and
choose ε > 0 such that B(y0, ε) ⊂ V (by Lemmma 20.B). Since {fn}
converges uniformly to f on X then there is N ∈ N such that for all n ≥ N
and for all x ∈ X we have

(fn(x), f (x)) < ε/3. (∗)

Since fN is continuous, there is a neighborhood U of x0 such that

fN(U) ⊂ B(fN(x0), ε/3) (∗∗)

by Theorem 18.1 (the (1)⇒(4) part where B(fN(x0), ε/3) is treated as a
neighborhood of f (x0)).

() Introduction to Topology July 13, 2016 10 / 11



Theorem 21.6. Uniform Limit Theorem

Theorem 21.6

Theorem 21.6. Uniform Limit Theorem.
Let fn : X → Y be a sequence of continuous functions from the
topological space X to the metric space Y . If {fn} converges uniformly to
f , then f is continuous.

Proof. Let V be open in Y and let x0 ∈ f −1(V ). Let y0 = f (x0) ∈ V and
choose ε > 0 such that B(y0, ε) ⊂ V (by Lemmma 20.B). Since {fn}
converges uniformly to f on X then there is N ∈ N such that for all n ≥ N
and for all x ∈ X we have

(fn(x), f (x)) < ε/3. (∗)

Since fN is continuous, there is a neighborhood U of x0 such that

fN(U) ⊂ B(fN(x0), ε/3) (∗∗)

by Theorem 18.1 (the (1)⇒(4) part where B(fN(x0), ε/3) is treated as a
neighborhood of f (x0)).

() Introduction to Topology July 13, 2016 10 / 11



Theorem 21.6. Uniform Limit Theorem

Theorem 21.6

Theorem 21.6. Uniform Limit Theorem.
Let fn : X → Y be a sequence of continuous functions from the
topological space X to the metric space Y . If {fn} converges uniformly to
f , then f is continuous.

Proof. Let V be open in Y and let x0 ∈ f −1(V ). Let y0 = f (x0) ∈ V and
choose ε > 0 such that B(y0, ε) ⊂ V (by Lemmma 20.B). Since {fn}
converges uniformly to f on X then there is N ∈ N such that for all n ≥ N
and for all x ∈ X we have

(fn(x), f (x)) < ε/3. (∗)

Since fN is continuous, there is a neighborhood U of x0 such that
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Theorem 21.6 (continued)

Proof (continued). Next, if x ∈ U then

d(f (x), fN(x)) < ε/3 by (∗) with n = N

d(fN(x), fN(x0)) < ε/3 by (∗∗) since x ∈ U

d(fN(x0), f (x0)) < ε/3 by (∗) with n = N and x = x0.

Then by the Triangle Inequality,

d(f (x), f (x0)) ≤ d(f (x), fN(x)) + d(fN(x), fN(x0)) + d(fN(x0), f (x0))

<
ε

3
+

ε

3
+

ε

3
= ε

for all x ∈ U.

So U is a neighborhood of x0 with f (U) ⊂ B(f (x0), ε) ⊂ V .
So by Theorem 18.1 (the (4)⇒(1) part), f is continuous.
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