Lemma 22.A

Introduction to Topology

Chapter 2. Topological Spaces and Continuous Functions Section 22. The Quotient Topology—Proofs of Theorems

of X to open sets of Y quotient map if and only if p is continuous and maps saturated open sets **Lemma 22.A.** Let X and Y be topological spaces. Then $p: X \to Y$ is a

similarly, saturated closed sets of X to closed sets of Y). definition of quotient map) A is open in X. So if p is a quotient map then definition of quotient map). Also, for any open saturated set $U \subset X$, there p is continuous and maps saturated open sets of X to open sets of Y (and is open $A \subset Y$ with $p^{-1}(A) = U$. Since U = p(A) is open in Y then (by inverse image of every open set in Y has an open inverse image in X, by **Proof.** Suppose p is a quotient map. Then p is continuous (since the

Lemma 22.A (continued)

of X to open sets of Y. quotient map if and only if p is continuous and maps saturated open sets **Lemma 22.A.** Let X and Y be topological spaces. Then $p: X \to Y$ is a

open sets of X to open sets of Y. Since p is continuous, then for any open **Proof** (continued). Now suppose p is continuous and maps saturated and only if $p^{-1}(U)$ is open in X. That is, p is a quotient map. have hypothesized that $p(p^{-1}(U)) = U$ is open in Y. So U is open in X if of some set in Y (namely, U). Since $p^{-1}(U)$ is a saturated open set, we Then, by the not above, $p^{-1}(U)$ is saturated since it is the inverse image $U \subset Y$ we have $p^{-1}(U)$ open in X. Now suppose $p^{-1}(U)$ is open in X.

I heorem 22.1

obtained by restricting p to S, $q = p|_A$. of X that is saturated with respect to p. Let $q:A\to p(A)$ be the map **Theorem 22.1.** Let $p: X \to Y$ be a quotient map. Let A be a subspace

- (1) If A is either open or closed in X, then a is a quotient map
- (2) If p is either an open or a closed map, then q is a quotient

then $q^{-1}(V)$ is all the points of A mapped by p into V. That is Since A is saturated with respect to p, then $p^{-1}(V) \subset A$. Since $q = p|_A$ $a \in A$ such that p(a) = v. So $p^{-1}(\{v\}) \cap A$ includes a and so is nonempty. **Proof. STEP 1.** Let $V \subset p(A)$. Then for each $v \in V$ there must be

if
$$V \subset \rho(A)$$
 then $q^{-1}(V) = \rho^{-1}(V)$.

includes $a \in A$ (and so $p^{-1}(p(a)) \cap A \neq \emptyset$), then $p^{-1}p(a) \subset A$. $u \in U$ and $a \in A$. Since A is saturated with respect to p and $p^{-1}(p(a))$ $U \cap A \subset U$ and $U \cap A \subset A$. Suppose $y = p(u) = p(a) \in p(U) \cap p(A)$ for For any subsets $U \subset X$ and $A \subset X$ we have $p(U \cap A) \subset p(U) \cap p(A)$ since

Introduction to Topology

Theorem 22.1 (continued 1)

 $y = p(u) \in p(U \cap A)$. So $p(U) \cap p(A) \subset p(U \cap A)$. Therefore **Proof (continued).** Since $u \in p^{-1}(p(a)) \subset A$ then $x \in U \cap A$. So

if
$$U \subset X$$
 then $p(U \cap A) = p(U) \cap p(A)$.

open in p(A). So if $q^{-1}(V)$ is open in A then V is open in p(A) (recall open in X. Since $q^{-1}(V) = p^{-1}(V)$ by Step 1, then $p^{-1}(V)$ is open in X. open in A. Since $q^{-1}(V)$ is open in A and A is open in X, then $q^{-1}(V)$ is **STEP 2.** Suppose set A is open in X. Let $V \subset p(A)$ where $q^{-1}(V)$ is $q:A \to p(A)$ and V is open in p(A) if and only if $q^{-1}(V)$ is open in A. continuous (restrictions of continuous functions are continuous by Theorem images of open sets are open) and q is a restriction of p, then q is q:A
ightarrow p(A)). Since p is a quotient map, then it is continuous (inverse Since p is a quotient map then (by definition) V is open in Y. So V is 18.2(d)). So inverse images of open sets are open under q. Therefore,

Theorem 22.1 (continued 2)

follows for A open. then $q:A\to p(A)$ is surjective. That is, q is a quotient map, and (1)**Proof (continued).** Since $p: X \to Y$ is surjective (onto) and $q = p|_{A}$,

sufficient to show that q is a quotient map and (2) follows for p an open open in Y. Hence V is open in p(A). As in the previous paragraph, this is by Step 1. Since p is a quotient map and U is open in X then p(U) is p is onto (surjective). Then $V = p(p^{-1}(V)) = p(U \cap A) = p(U) \cap p(A)$ Suppose map p is open. Let $A \subset p(A)$ where $q^{-1}(V)$ is open in A. Since $p^{-1}(V) = A \cap U$ for some open set U in X. Now $p(p^{-1}(V)) = V$ because $p^{-1}(V) = q^{-1}(V)$ by Step 1, then $p^{-1}(V)$ is open in A. That is,

map p closed. with "closed." Therefore, (1) follows for set A closed and (2) follows for **STEP 3.** The arguments in Step 2 follow through with "open" replace

Theorem 22.2

June 5, 2016 6 / 13

Theorem 22.2 (continued 1)

only if g is a quotient map. f is continuous if and only if g is continuous. f is a quotient map if and let $g:X\to Z$ be a map that is constant on each set $p^{-1}(\{y\})$, for $y\in Y$. Then g induces a map $f:Y\to Z$ such that $f\circ p=g$. The induced map **Theorem 22.2.** Let $p: X \to Y$ be a quotient map. Let Z be a space and

 $f:Y\to Z$ and for each $x\in W$ we have f(p(x))=g(x). So function fg is constant on $p^{-1}(\{y\})$. Define f(y) to be this one point. Then **Proof.** For each $y \in Y$, the set $g(p^{-1}(\{y\}))$ is a one-point set in Z since

a quotient map and so by definition is continuous). If f is continuous, then the composition $g = f \circ p$ is continuous (since p is

continuous if and only if g is continuous. $p^{-1}(f^{-1}(V))$ is open, then $f^{-1}(V)$ is open and so f is continuous. So f is map, $p^{-1}(f^{-1}(V))$ is open if and only if $f^{-1}(V)$ is open and hence, since open in X. But $g^{-1}(V)=
ho^{-1}(f^{-1}(V))$ by above. Since ho is a quotient Suppose g is continuous. Let V be an open set in Z. Then $g^{-1}(V)$ is

Suppose f is a quotient map. Then g is the composite of two quotient maps and hence is a quotient map (see page 141 for details)

in X because p is continuous. Since $g^{-1}(V) = p^{-1}(f^{-1}(V))$, then definition of quotient map, g is onto (surjective). Therefore f is surjective. Z then $f^{-1}(V)$ is open in Y. Therefore, f is a quotient map. map, so g is continuous and by above, f is continuous. So if V is open in $g^{-1}(V)$ is open. Since g is a quotient map, then V is open in Z. So if Let $V \subset Z$ and suppose $f^{-1}(V)$ is open in Y. Then $p^{-1}(f^{-1}(V))$ is open **Proof** (continued). Suppose that g is a quotient map. Then, by the $f^{-1}(V)$ is open then V is open. We have assumed that f is a quotient

> be the following collection of subsets of X: $X^* = \{g^{-1}\{z\}\} \mid z \in Z\}$. Let Corollary 22.3. Let $g:X\to Z$ be a surjective continuous map. Let X^* X^* have the quotient topology.

which is a homeomorphism if and only if g is a quotient map

(b) If Z is Hausdorff, so is X^*

Corollary 22.3 (continued 1)

Corollary 22.3 (continued 2)

disjoint (the $g^{-1}(\{z\})$'s partition X). Hence $z_1 \neq z_2$ and $x_1 \neq x_2$ and so $x_1, x_2 \in X$ such that $p(x_1) = g^{-1}(\{z_1\}))$ and $p(x_2) = g^{-1}(\{z_2\})$ (notice that projection p is onto X^*). So $x_1 \in g^{-1}(\{z_1\})$ and $g^{-1}(\{z_2\})$ must be surjective, then f is surjective. Suppose $g^{-1}(\{z_1\})=g^{-1}(\{z_2\})$. Let $f(g^{-1}(\{z_1\})) \neq f(g^{-1}(\{z_2\}))$, and so f is one to one. So f is a bijection. and $(f \circ p)(x_2) = f(g^{-1}(\{z_2\}) = g(x_2) = z_2$. That is, $g(x_1) = z_1 \neq z_2 = g(x_2)$. So $(f \circ p)(x_1) = f(g^{-1}(\{z_1\})) = g(x_1) = z_1$ As argued in the proof of Theorem 22.2, since $f \circ p = g$ and g is hypothesized to be continuous, g induces a continuous map $f: X^* \to Z$. to the element of X^* containing it. By Theorem 22.2, since g is **Proof.** Let $p: X \to X^*$ be the projection map that carries each point in X

> the definition of "quotient topology"). So the composition $g=f\circ p$ is a quotient map. Then by Theorem 22.2, f is a quotient map. Since f is open. So f is a quotient map. Now p is a quotient map by definition (see sets to open sets and since f is continuous, inverse images of pen sets are **Proof** (continued). Suppose f is a homeomorphism. Then f maps open bijective as argued above, then f is a homeomorphism. So (a) follows.

the two given points of X^* . Hence X^* is Hausdorff. are distinct since f is one to one by (a). So in Z these images have Suppose Z is Hausdorff. For distinct elements of X^* , their images under f is a bijection) and open (f is continuous by (a)) and are neighborhoods of disjoint neighborhoods U and V. Then $f^{-1}(U)$ and $f^{-1}(V)$ are disjoint $(f^{-1}(V))$

Introduction to Topology