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Introduction to Topology

Chapter 2. Topological Spaces and Continuous Functions
Section 22. The Quotient Topology—Proofs of Theorems
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Lemma 22.A

Lemma 22.A (continued)

Lemma 22.A. Let X and Y be topological spaces. Then p: X — Y is a
quotient map if and only if p is continuous and maps saturated open sets
of X to open sets of Y.

Proof (continued). Now suppose p is continuous and maps saturated
open sets of X to open sets of Y. Since p is continuous, then for any open
U C Y we have p~1(U) open in X. Now suppose p~*(U) is open in X.
Then, by the not above, p~1(U) is saturated since it is the inverse image
of some set in Y (namely, U). Since p~1(U) is a saturated open set, we
have hypothesized that p(p~1(U)) = U is open in Y. So U is open in X if
and only if p~(U) is open in X. That is, p is a quotient map. O
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Lemma 22.A

Lemma 22.A

Lemma 22.A. Let X and Y be topological spaces. Then p: X — Y is a
quotient map if and only if p is continuous and maps saturated open sets
of X to open sets of Y.

Proof. Suppose p is a quotient map. Then p is continuous (since the
inverse image of every open set in Y has an open inverse image in X, by
definition of quotient map). Also, for any open saturated set U C X, there
is open A C Y with p~1(A) = U. Since U = p(A) is open in Y then (by
definition of quotient map) A is open in X. So if p is a quotient map then
p is continuous and maps saturated open sets of X to open sets of Y (and
similarly, saturated closed sets of X to closed sets of Y).
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Theorem 22.1

Theorem 22.1. Let p: X — Y be a quotient map. Let A be a subspace
of X that is saturated with respect to p. Let ¢ : A — p(A) be the map
obtained by restricting p to S, g = p|a.
(1) If Ais either open or closed in X, then a is a quotient map.
(2) If pis either an open or a closed map, then g is a quotient
map.
Proof. STEP 1. Let V C p(A). Then for each v € V there must be
a € A such that p(a) = v. So p~1({v}) N A includes a and so is nonempty.
Since A is saturated with respect to p, then p~1(V) C A. Since ¢ = p|a
then g~1(V) is all the points of A mapped by p into V. That is,

if V C p(A) then g 1(V) = p~}(V).

For any subsets U C X and A C X we have p(UN A) C p(U) N p(A) since
UNAcCUand UNAC A. Suppose y = p(u) = p(a) € p(U) N p(A) for
u € Uand ac A. Since A is saturated with respect to p and p~*(p(a))
includes a € A (and so p~1(p(a)) N A # @), then p~lp(a) C A.
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Theorem 22.1 Theorem 22.1

Theorem 22.1 (continued 1) Theorem 22.1 (continued 2)

Proof (continued). Since u € p~1(p(a)) C Athen x € UNA. So

Proof (continued). Since p: X — Y is surjective (onto) and g = p|a,
y =p(u) € p(UNA). So p(U)n p(A) C p(UN A). Therefore

then g : A — p(A) is surjective. That is, g is a quotient map, and (1)
follows for A open.

Suppose map p is open. Let A C p(A) where g~1(V) is open in A. Since
STEP 2. Suppose set A is open in X. Let V C p(A) where g=1(V) is b|HC\v =g '(V) by Step 1, then p HC\V 'S open _:b. That is,

open in A. Since g~ (V) is open in A and A is open in X, then g7 1(V) is P (V)= \,J Q.dnow some open set U _H: X. Now p(p~"(V)) = V because
open in X. Since g7 }(V) = p~1(V) by Step 1, then p~1(V) is open in X. P 1S onto Am:.cmn:<m.v. Then .< = plp~ C\vv.ﬂ p(U n A) = p(U)N b.ﬁxc
by Step 1. Since p is a quotient map and U is open in X then p(U) is
open in Y. Hence V is open in p(A). As in the previous paragraph, this is
sufficient to show that g is a quotient map and (2) follows for p an open
map.

STEP 3. The arguments in Step 2 follow through with “open” replace
with “closed.” Therefore, (1) follows for set A closed and (2) follows for
map p closed. [

if U C X then p(UN A) = p(U) N p(A).

Since p is a quotient map then (by definition) V is open in Y. So V is
open in p(A). So if g7}(V) is open in A then V is open in p(A) (recall

g : A— p(A)). Since p is a quotient map, then it is continuous (inverse
images of open sets are open) and q is a restriction of p, then q is
continuous (restrictions of continuous functions are continuous by Theorem
18.2(d)). So inverse images of open sets are open under q. Therefore,
q:A— p(A) and V is open in p(A) if and only if g7(V) is open in A.
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Theorem 22.2 Theorem 22.2

Theorem 22.2 Theorem 22.2 (continued 1)

Theorem 22.2. Let p: X — Y be a quotient map. Let Z be a space and

let g : X — Z be a map that is constant on each set p~1({y}), for y € Y. Proof. For each y € Y/, the set g(p~'({y})) is a one-point set in Z since
Then g induces a map f : Y — Z such that f o p = g. The induced map g is constant on p~'({y}). Define f(y) to be this one point. Then

f is continuous if and only if g is continuous. f is a quotient map if and f:Y — Z and for each x € W we have f(p(x)) = g(x). So function f

only if g is a quotient map. exists as claimed.
If f is continuous, then the composition g = f o p is continuous (since p is

a quotient map and so by definition is continuous).
X Suppose g is continuous. Let V be an open set in Z. Then g~ (V) is
open in X. But g71(V) = p~}(f~1(V)) by above. Since p is a quotient
p g map, p~1(f~1(V)) is open if and only if f~}(V/) is open and hence, since
p~L(f~1(V)) is open, then f~1(V) is open and so f is continuous. So f is
continuous if and only if g is continuous.
4 Suppose f is a quotient map. Then g is the composite of two quotient
maps and hence is a quotient map (see page 141 for details).
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Theorem 22.2

Theorem 22.2 (continued 2)

Proof (continued). Suppose that g is a quotient map. Then, by the
definition of quotient map, g is onto (surjective). Therefore f is surjective.
Let V C Z and suppose f~1(V) is open in Y. Then p~1(f~1(V)) is open
in X because p is continuous. Since g~ (V) = p~1(f~1(V)), then

g 1(V) is open. Since g is a quotient map, then V is open in Z. So if
f~1(V) is open then V is open. We have assumed that f is a quotient
map, so g is continuous and by above, f is continuous. So if V is open in
Z then f~1(V) is open in Y. Therefore, f is a quotient map. O
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Corollary 22.3 (continued 1)

Proof. Let p: X — X* be the projection map that carries each point in X
to the element of X* containing it. By Theorem 22.2, since g is
hypothesized to be continuous, g induces a continuous map f : X* — Z.
As argued in the proof of Theorem 22.2, since fop =g and g is
surjective, then f is surjective. Suppose g 1({z1}) = g 1({z}). Let
x1,x2 € X such that p(x1) = g 1({z1})) and p(x2) = g 1 ({z2}) (notice
that projection p is onto X*). So x1 € g71({z1}) and g71({z2}) must be
disjoint (the g 1({z})’s partition X). Hence z; # z» and x; # x> and so
g(x) =21 # 2 =g(x) So (fop)(x)=flg ' ({a})) =gla) =2
and (fop)(x) = f(g 1({z}) = g(x2) = z. That is,

f(g=t({z1})) # f(g71({z2})), and so f is one to one. So f is a bijection.
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Corollary 22.3

Corollary 22.3

Corollary 22.3. Let g : X — Z be a surjective continuous map. Let X*
be the following collection of subsets of X: X* = {g71{z}) | z € Z}. Let
X* have the quotient topology.

(a) The map g induces a bijective continuous map f : X* — Z,
which is a homeomorphism if and only if g is a quotient map.

X

X*
Nn.

(b) If Z is Hausdorff, so is X*.
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Corollary 22.3

Corollary 22.3 (continued 2)

Proof (continued). Suppose f is a homeomorphism. Then f maps open
sets to open sets and since f is continuous, inverse images of pen sets are
open. So f is a quotient map. Now p is a quotient map by definition (see
the definition of “quotient topology”). So the composition g = fopis a
quotient map. Then by Theorem 22.2, f is a quotient map. Since f is
bijective as argued above, then f is a homeomorphism. So (a) follows.

Suppose Z is Hausdorff. For distinct elements of X*, their images under f
are distinct since f is one to one by (a). So in Z these images have

disjoint neighborhoods U and V. Then f~1(U) and f~1(V) are disjoint (f
is a bijection) and open (f is continuous by (a)) and are neighborhoods of
the two given points of X*. Hence X* is Hausdorff. m
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