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Lemma 22.A

Lemma 22.A

Lemma 22.A. Let X and Y be topological spaces. Then p : X → Y is a
quotient map if and only if p is continuous and maps saturated open sets
of X to open sets of Y .

Proof. Suppose p is a quotient map. Then p is continuous (since the
inverse image of every open set in Y has an open inverse image in X , by
definition of quotient map). Also, for any open saturated set U ⊂ X , there
is open A ⊂ Y with p−1(A) = U.

Since U = p(A) is open in Y then (by
definition of quotient map) A is open in X . So if p is a quotient map then
p is continuous and maps saturated open sets of X to open sets of Y (and
similarly, saturated closed sets of X to closed sets of Y ).
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Lemma 22.A

Lemma 22.A (continued)

Lemma 22.A. Let X and Y be topological spaces. Then p : X → Y is a
quotient map if and only if p is continuous and maps saturated open sets
of X to open sets of Y .

Proof (continued). Now suppose p is continuous and maps saturated
open sets of X to open sets of Y . Since p is continuous, then for any open
U ⊂ Y we have p−1(U) open in X . Now suppose p−1(U) is open in X .
Then, by the not above, p−1(U) is saturated since it is the inverse image
of some set in Y (namely, U). Since p−1(U) is a saturated open set, we
have hypothesized that p(p−1(U)) = U is open in Y .

So U is open in X if
and only if p−1(U) is open in X . That is, p is a quotient map.
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Theorem 22.1

Theorem 22.1

Theorem 22.1. Let p : X → Y be a quotient map. Let A be a subspace
of X that is saturated with respect to p. Let q : A → p(A) be the map
obtained by restricting p to S , q = p|A.

(1) If A is either open or closed in X , then a is a quotient map.

(2) If p is either an open or a closed map, then q is a quotient
map.

Proof. STEP 1. Let V ⊂ p(A). Then for each v ∈ V there must be
a ∈ A such that p(a) = v . So p−1({v})∩A includes a and so is nonempty.

Since A is saturated with respect to p, then p−1(V ) ⊂ A. Since q = p|A
then q−1(V ) is all the points of A mapped by p into V . That is,

if V ⊂ p(A) then q−1(V ) = p−1(V ).

For any subsets U ⊂ X and A ⊂ X we have p(U ∩A) ⊂ p(U)∩ p(A) since
U ∩ A ⊂ U and U ∩ A ⊂ A. Suppose y = p(u) = p(a) ∈ p(U) ∩ p(A) for
u ∈ U and a ∈ A. Since A is saturated with respect to p and p−1(p(a))
includes a ∈ A (and so p−1(p(a)) ∩ A 6= ∅), then p−1p(a) ⊂ A.
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Theorem 22.1

Theorem 22.1 (continued 1)

Proof (continued). Since u ∈ p−1(p(a)) ⊂ A then x ∈ U ∩ A. So
y = p(u) ∈ p(U ∩ A). So p(U) ∩ p(A) ⊂ p(U ∩ A). Therefore

if U ⊂ X then p(U ∩ A) = p(U) ∩ p(A).

STEP 2. Suppose set A is open in X . Let V ⊂ p(A) where q−1(V ) is
open in A. Since q−1(V ) is open in A and A is open in X , then q−1(V ) is
open in X . Since q−1(V ) = p−1(V ) by Step 1, then p−1(V ) is open in X .
Since p is a quotient map then (by definition) V is open in Y . So V is
open in p(A). So if q−1(V ) is open in A then V is open in p(A) (recall
q : A → p(A)). Since p is a quotient map, then it is continuous (inverse
images of open sets are open) and q is a restriction of p, then q is
continuous (restrictions of continuous functions are continuous by Theorem
18.2(d)). So inverse images of open sets are open under q. Therefore,
q : A → p(A) and V is open in p(A) if and only if q−1(V ) is open in A.
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Theorem 22.1

Theorem 22.1 (continued 2)

Proof (continued). Since p : X → Y is surjective (onto) and q = p|A,
then q : A → p(A) is surjective. That is, q is a quotient map, and (1)
follows for A open.
Suppose map p is open. Let A ⊂ p(A) where q−1(V ) is open in A. Since
p−1(V ) = q−1(V ) by Step 1, then p−1(V ) is open in A. That is,
p−1(V ) = A ∩U for some open set U in X .

Now p(p−1(V )) = V because
p is onto (surjective). Then V = p(p−1(V )) = p(U ∩ A) = p(U) ∩ p(A)
by Step 1. Since p is a quotient map and U is open in X then p(U) is
open in Y . Hence V is open in p(A). As in the previous paragraph, this is
sufficient to show that q is a quotient map and (2) follows for p an open
map.
STEP 3. The arguments in Step 2 follow through with “open” replace
with “closed.” Therefore, (1) follows for set A closed and (2) follows for
map p closed.
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Theorem 22.2

Theorem 22.2

Theorem 22.2. Let p : X → Y be a quotient map. Let Z be a space and
let g : X → Z be a map that is constant on each set p−1({y}), for y ∈ Y .
Then g induces a map f : Y → Z such that f ◦ p = g . The induced map
f is continuous if and only if g is continuous. f is a quotient map if and
only if g is a quotient map.
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Theorem 22.2

Theorem 22.2 (continued 1)

Proof. For each y ∈ Y , the set g(p−1({y})) is a one-point set in Z since
g is constant on p−1({y}). Define f (y) to be this one point. Then
f : Y → Z and for each x ∈ W we have f (p(x)) = g(x). So function f
exists as claimed.

If f is continuous, then the composition g = f ◦ p is continuous (since p is
a quotient map and so by definition is continuous).
Suppose g is continuous. Let V be an open set in Z . Then g−1(V ) is
open in X . But g−1(V ) = p−1(f −1(V )) by above. Since p is a quotient
map, p−1(f −1(V )) is open if and only if f −1(V ) is open and hence, since
p−1(f −1(V )) is open, then f −1(V ) is open and so f is continuous. So f is
continuous if and only if g is continuous.
Suppose f is a quotient map. Then g is the composite of two quotient
maps and hence is a quotient map (see page 141 for details).
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Theorem 22.2

Theorem 22.2 (continued 2)
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definition of quotient map, g is onto (surjective). Therefore f is surjective.
Let V ⊂ Z and suppose f −1(V ) is open in Y . Then p−1(f −1(V )) is open
in X because p is continuous. Since g−1(V ) = p−1(f −1(V )), then
g−1(V ) is open. Since g is a quotient map, then V is open in Z .

So if
f −1(V ) is open then V is open. We have assumed that f is a quotient
map, so g is continuous and by above, f is continuous. So if V is open in
Z then f −1(V ) is open in Y . Therefore, f is a quotient map.
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Corollary 22.3

Corollary 22.3

Corollary 22.3. Let g : X → Z be a surjective continuous map. Let X ∗

be the following collection of subsets of X : X ∗ = {g−1{z}) | z ∈ Z}. Let
X ∗ have the quotient topology.

(a) The map g induces a bijective continuous map f : X ∗ → Z ,
which is a homeomorphism if and only if g is a quotient map.

X ∗

@
@

@
@

@R

X

- Z

?

p

f

g

(b) If Z is Hausdorff, so is X ∗.
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Corollary 22.3

Corollary 22.3 (continued 1)

Proof. Let p : X → X ∗ be the projection map that carries each point in X
to the element of X ∗ containing it. By Theorem 22.2, since g is
hypothesized to be continuous, g induces a continuous map f : X ∗ → Z .
As argued in the proof of Theorem 22.2, since f ◦ p = g and g is
surjective, then f is surjective. Suppose g−1({z1}) = g−1({z2}). Let
x1, x2 ∈ X such that p(x1) = g−1({z1})) and p(x2) = g−1({z2}) (notice
that projection p is onto X ∗). So x1 ∈ g−1({z1}) and g−1({z2}) must be
disjoint (the g−1({z})’s partition X ). Hence z1 6= z2 and x1 6= x2 and so
g(x1) = z1 6= z2 = g(x2).

So (f ◦ p)(x1) = f (g−1({z1})) = g(x1) = z1

and (f ◦ p)(x2) = f (g−1({z2}) = g(x2) = z2. That is,
f (g−1({z1})) 6= f (g−1({z2})), and so f is one to one. So f is a bijection.
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Corollary 22.3

Corollary 22.3 (continued 2)

Proof (continued). Suppose f is a homeomorphism. Then f maps open
sets to open sets and since f is continuous, inverse images of pen sets are
open. So f is a quotient map. Now p is a quotient map by definition (see
the definition of “quotient topology”). So the composition g = f ◦ p is a
quotient map. Then by Theorem 22.2, f is a quotient map. Since f is
bijective as argued above, then f is a homeomorphism. So (a) follows.

Suppose Z is Hausdorff. For distinct elements of X ∗, their images under f
are distinct since f is one to one by (a). So in Z these images have
disjoint neighborhoods U and V . Then f −1(U) and f −1(V ) are disjoint (f
is a bijection) and open (f is continuous by (a)) and are neighborhoods of
the two given points of X ∗. Hence X ∗ is Hausdorff.
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